38 Projects

View our latest Project Portfolio

View Project Portfolio

No results.

#1 ePlanning and eApprovals – Scoping Study

Planning and building approval processes are still largely paper (PDF) based, which make them inefficient and time-consuming, imposing significant costs on both industry and government. Industry is effectively unable to test plan compliance against planning controls and building regulations, track progress of their applications, and efficiently track compliance through construction. The long-term objective of the […]

ePlanning and eApprovals, Planning, Uses and Zoning  ·  Lendlease Digital, uTecture Australia, Sumitomo Forestry Australia, A.G. Coombs, Salesforce.com, Inc., Master Builders Association Victoria, Victorian Building Authority, Monash University, The University of Melbourne

Planning and building approval processes are still largely paper (PDF) based, which make them inefficient and time-consuming, imposing significant costs on both industry and government. Industry is effectively unable to test plan compliance against planning controls and building regulations, track progress of their applications, and efficiently track compliance through construction. The long-term objective of the Building 4.0 CRC in this area is to embrace the opportunities that digital workflow and digital twin technology provide to design, develop and deliver an innovative digital platform to facilitate effective, efficient and timely planning, building permits, approvals, ongoing compliance with planning controls, building regulations and other regulatory requirements.

In this project, a roadmap was developed for the phased design and implementation of an innovative digital platform to facilitate effective, efficient, and timely planning and building permits and approvals, thereby removing unnecessary delays and costs that impose substantial constraints on the building and construction sector. This objective must be viewed in the context of what industry perceives to be a broader problem, and the projects longer-term objective that extends beyond the planning and building permit process to the whole of the building lifecycle.

BIM, Building approvals, Digital transformation, Digital Twin, Permits, Planning, Validation

#2 Automated tracking of construction materials for improved supply chain logistics and provenance – Phase 1 Scoping Study

The construction supply chain poses challenges and risks mainly due to its unstable, highly fragmented, and geographically dispersed nature. The ability to track and trace (i.e., traceability), is becoming increasingly important as it contributes to and associates with building compliances, safety, project efficiency, and sustainability. This study aims to understand the state-of-the-art of traceability in […]

Supply Chain Management, Logistics  ·  BlueScope, Holmesglen Institute, Lendlease Digital, Monash University, Queensland University of Technology, Salesforce.com, Inc., Sumitomo Forestry Australia, Master Builders Association Victoria, The University of Melbourne, Victorian Building Authority, Ynomia

The construction supply chain poses challenges and risks mainly due to its unstable, highly fragmented, and geographically dispersed nature. The ability to track and trace (i.e., traceability), is becoming increasingly important as it contributes to and associates with building compliances, safety, project efficiency, and sustainability. This study aims to understand the state-of-the-art of traceability in the construction industry and key stakeholders’ perspectives, as well as to recommend future research. Our researchers have used multiple research methods (e.g., interviews, literature review and case studies) to assess existing and emerging tracking technologies (e.g., sensors, information systems) for sectoral and issue appropriateness.

Digitalisation, Supply Chain, Traceability

#3 Projects to Platforms: Investigating New Forms of Collaboration – Scoping Study

Construction practice is rooted in project-based thinking as organisations use temporary teams to create one-off products in response to unique and changeable site conditions. As a result, product platforms have begun to emerge in construction. However, the introduction of broader, platform-based business models promises fundamental and holistic change to traditional construction. Such business models leverage […]

Business Model Innovation, Platforms and Process  ·  A.G. Coombs, BlueScope, Hyne & Son, Lendlease Digital, Monash University, Sumitomo Forestry Australia, The University of Melbourne

Construction practice is rooted in project-based thinking as organisations use temporary teams to create one-off products in response to unique and changeable site conditions.

As a result, product platforms have begun to emerge in construction. However, the introduction of broader, platform-based business models promises fundamental and holistic change to traditional construction.

Such business models leverage a combination of strategies in terms of product and process that require investigation, definition, critique, and adaptation for their potential use in construction.

This project investigates construction's disparate ecosystem to consolidate the broader network of actors through an examination of industry-wide business-level platforms.

Business Ecosystem, Business Model change, Digital Platforms, Platforms, Supply Chain Innovation

#4 Computational Design and Optimisation Tools for Prefabricated Building Systems – Phase 1 Scoping Study

The objective of this project is to develop a computational framework for producing optimised design options for modular façade and floor systems, which are both structurally and thermally efficient, early in the conceptual design phase. Given the multi-objective criteria (both structural and energy), several designs will be presented to the client in a format that […]

Computational Design  ·  M-Modular, The University of Melbourne, Queensland University of Technology

The objective of this project is to develop a computational framework for producing optimised design options for modular façade and floor systems, which are both structurally and thermally efficient, early in the conceptual design phase.

Given the multi-objective criteria (both structural and energy), several designs will be presented to the client in a format that is intelligible to engineers for them to make an informed decision on the option that meets the constraints of their projects.

The time/cost efficiency of these building systems will be ascertained by benchmarking them against existing case studies of building systems (façade and floor) designed using traditional manual techniques.

https://player.vimeo.com/video/689238399?h=619c957472

Architecture and Building Design, Computational design, Daylighting analysis, Digital Twin, Energy analysis, engineering, Modular building, Prefabrication, Structural Engineering

#5 Automatic compliance and energy rating system

This project will transform the current manual process of energy compliance checks for new residential homes by integrating existing rapid digital building software with Australia’s building regulation and performance assessment requirements. The outcome is intended to be a fully integrated and seamless workflow with home design and subsequent implications, and energy performance assessment performed in […]

Environmentally Sustainable Design, Digital Twins & 3D Modelling, Energy  ·  uTecture Australia, Green Building Council of Australia, The University of Melbourne, Monash University, Queensland University of Technology

This project will transform the current manual process of energy compliance checks for new residential homes by integrating existing rapid digital building software with Australia’s building regulation and performance assessment requirements.

The outcome is intended to be a fully integrated and seamless workflow with home design and subsequent implications, and energy performance assessment performed in real time.

https://player.vimeo.com/video/689239323?h=061a07aa4d

Architecture and Building Design, Building Informatics and Analysis, Cloud Computing, Database and Cloud Security, Environmental Performance, Innovation, Reality Capture, Sustainability

#6 Field Data Collation to support real-time operational management

Accurate and timely information about construction processes is essential to provide greater visibility and understanding of project progress and therefore deliver the projects on time and on budget. This project seeks to make significant advances in the knowledge and practice of acquiring and managing real-time operation data. More specific objectives include:1) understanding how passive data […]

IoT, Sensors and Construction Tech  ·  Lendlease Digital, Ynomia, Standards Australia, Monash University

Accurate and timely information about construction processes is essential to provide greater visibility and understanding of project progress and therefore deliver the projects on time and on budget.

This project seeks to make significant advances in the knowledge and practice of acquiring and managing real-time operation data. More specific objectives include:
1) understanding how passive data collection can improve the management and coordination of on-site activities
2) analysing state-of-the-art in sensing and analytics technologies
3) conducting field tests to assess and validate the key assumptions underlying an implementation roadmap.

https://player.vimeo.com/video/689239545?h=c4f20bd343

Data Management, Innovation, Internet of Things, Sensor Technology

#8 Prefab, Integrated Wall Systems – Scoping Study

This project seeks to design a high-performance wall system exceeding the performance of a 7-star dwelling, with window systems that can be manufactured in two weeks and wall systems that can assembled on-site (lockup stage) in four weeks, and can be manufactured, delivered and installed in a cost-effective manner. The initial phase consists of a […]

Sustainable Materials & Products  ·  Bentley Homes, Ultimate Windows, The University of Melbourne, Monash University

This project seeks to design a high-performance wall system exceeding the performance of a 7-star dwelling, with window systems that can be manufactured in two weeks and wall systems that can assembled on-site (lockup stage) in four weeks, and can be manufactured, delivered and installed in a cost-effective manner.

The initial phase consists of a technology review and scoping exercise that will lead a detailed design phase and a manufacturing systems design phase.

#9 Implementing DfMA and Lean in Construction: Best Practice Guidelines through a Study of Building Services and Structure

This 6-month research project aimed to understand: the current state of Lean and Design for Manufacture and Assembly (DFMA) knowledge within construction; their degree of implementation in both the local construction industry and abroad; and the implementation challenges that need to be addressed if we are to see broader uptake. To address these points, the […]

Building Design and DFMA, Construction Management, Platforms and Process  ·  A.G. Coombs, Lendlease Digital, Monash University, The University of Melbourne

This 6-month research project aimed to understand: the current state of Lean and Design for Manufacture and Assembly (DFMA) knowledge within construction; their degree of implementation in both the local construction industry and abroad; and the implementation challenges that need to be addressed if we are to see broader uptake. To address these points, the project team conducted a literature review, a case study of a local construction project, and a survey of leading local and international companies who have adopted DfMA and/or Lean practices. The findings were synthesised into a self-assessment tool and implementation roadmap concept aimed at individual companies hoping to adopt Lean and DfMA practices.

DfMA, Lean

#10 Product Platform for Volumetric Building (Scoping Study)

Product platforms seek to standardise products, processes, company knowledge, and supply chain to drive efficiency, unlock design variability, and enable continual improvement in response to market conditions. This project sought to define a framework and roadmap for the future development of a product platform specific to the context and the needs of our industry partner: […]

Platforms and Process, Building Design and DFMA  ·  Fleetwood Australia, Monash University

Product platforms seek to standardise products, processes, company knowledge, and supply chain to drive efficiency, unlock design variability, and enable continual improvement in response to market conditions.

This project sought to define a framework and roadmap for the future development of a product platform specific to the context and the needs of our industry partner: a large Australian volumetric construction company.

The research involved: the investigation of best practice case studies; value stream mapping of our industry partners existing design, manufacture, and assembly systems; and identification of pain points‚ in the value stream and opportunities for commonality of parts and processes.

Monash Future Building Initiative

DfMA, Industrialised Building, Prefabrication, Product Platform, Volumetric construction

#11 Environmental Credentials for Building Technology Platforms

There is a growing need for environmental credentials to support B2B and B2C communication in the building industry. Solutions based on the Life Cycle Assessment (LCA) methodology are the most comprehensive, covering all the stages of the building’s lifecycle – from extraction of raw materials to their end-of-life stages. Despite the potential efficiencies of loosely-coupled […]

Environmentally Sustainable Design, Sustainable Materials & Products, Life Cycle Assessment, Energy  ·  uTecture Australia, Coresteel Buildings, Monash University

There is a growing need for environmental credentials to support B2B and B2C communication in the building industry. Solutions based on the Life Cycle Assessment (LCA) methodology are the most comprehensive, covering all the stages of the building's lifecycle – from extraction of raw materials to their end-of-life stages.

Despite the potential efficiencies of loosely-coupled supply chains, distributed decision making, and increased levels of digitalisation, there are no readily available methods to systematically assess the environmental impacts of building technology platforms.

This project is developing an ISO-compliant LCA framework to quantify and communicate these impacts using the uTecture and Airbuildr platforms as cases.

https://player.vimeo.com/video/690487453?h=25c787f18e

Environmental Performance, LCA, Life Cycle Analysis, Net Zero Emissions, Platforms

#12 VR/AR technologies in vocational education and training (scoping study)

Australia’s Vocational Education Training sector has a critical role in preparing or updating current or future employees with job-related skills required in the workforce. The construction industry is highly regulated by VET programs that provide licensing requirements to many construction occupations. The number of VET-related occupations is expected to increase in the coming years, driven […]

Construction Safety and Wellbeing, Artificial Intelligence and Machine Learning, Digital Twins & 3D Modelling  ·  Holmesglen Institute, Master Builders Association Victoria, Monash University, Queensland University of Technology

Australia's Vocational Education Training sector has a critical role in preparing or updating current or future employees with job-related skills required in the workforce. The construction industry is highly regulated by VET programs that provide licensing requirements to many construction occupations. The number of VET-related occupations is expected to increase in the coming years, driven by a growing demand for skilled workers due to construction projects.

These requirements imply significant pressures to update the training delivery approaches in the construction VET system. Findings for this project were obtained from a literature review, market survey and a Delphi method as a research approach, which were selected to propose a decision making process to determine appropriate XR technology for specific skill training in the construction industry.

This study proposes the most significant factors that VET educational providers should consider when selecting XR technologies to be implemented in VET training programs. Likewise, this study presents a workflow process for translating conventional vocational skill training into XR-based (VR/AR/MR) learning environments.

https://player.vimeo.com/video/689241701?h=ace0af2ac9
https://player.vimeo.com/video/689240260?h=2aef3e723a

3D Visualisation and Modelling, Augmented Reality, Capability Development, Digital Twins, Extended Reality, Health & Safety, Human Resources, Industrialised Construction, Innovation, Mixed Reality, Reality Capture, Virtual Reality, Workforce Management

#15 Using the Whole Tree for Future Timber-Based Construction – Scoping Study

This project aims to optimise parts of the Australian sawn timber processing sector, so it can adapt to changes in market demand and material characteristics in ways that align with the future timber-based construction. The project is a review and scoping exercise to find ways of using the whole tree more effectively, while adding value […]

Sustainable Materials & Products, Supply Chain Management, Logistics, Building Materials & Systems, Environmentally Sustainable Design  ·  Hyne & Son, Sumitomo Forestry Australia, The University of Melbourne

This project aims to optimise parts of the Australian sawn timber processing sector, so it can adapt to changes in market demand and material characteristics in ways that align with the future timber-based construction. The project is a review and scoping exercise to find ways of using the whole tree more effectively, while adding value to the built environment. The aim is to propose avenues of research that will address timber supply and provide manufacturing and structural design solutions to build a more resilient industry.

UoM Sustainable and Renewable Forest Products Group

Advanced Manufacturing, Engineered Wood Products, Plantation Resource, Sawn timber, Supply Chain

#17 The implication of Industry 4.0 for the construction industry: towards smart prefab

The Australian construction industry has faced severe challenges over the past few years. Spiralling costs of building materials and construction have made housing less affordable. Productivity, sustainability, health and well-being, and safety imperatives together with the market-wide expectation for high-quality design have further challenged traditional construction. This project aims to develop a roadmap for Smart […]

Building Materials & Systems, Digital Project Management, IoT, Sensors and Construction Tech, User Interface, Visualisation and Analytics, Artificial Intelligence and Machine Learning, Digital and Automated Fabrication (Robotics), Platforms and Process, Policy and Regulation, Digital Twins & 3D Modelling, Business Model Innovation, Supply Chain Management, Logistics  ·  Monash University, The University of Melbourne, Queensland University of Technology

The Australian construction industry has faced severe challenges over the past few years. Spiralling costs of building materials and construction have made housing less affordable.

Productivity, sustainability, health and well-being, and safety imperatives together with the market-wide expectation for high-quality design have further challenged traditional construction.

This project aims to develop a roadmap for Smart Prefab and Industry 4.0 for the Australian building industry. We are developing this roadmap through a thorough review of world best practice and industry 4.0 principals coupled with a series of workshops with industry leaders in construction in Australia to better understand opportunities and barriers facing them.

Advanced Manufacturing, Artificial Intelligence, Augmented Reality, Australian Building Industry, Digital Engineering, Industry 4.0, Internet of Things, Robotics, Smart Prefab, Virtual Reality

#18 Long-span Low-Carbon Floor Systems (Scoping Study)

CRC#18 addresses the lack of data-informed product evaluation methods in construction, through the benchmarking of nine long-span, low carbon floor systems. The key outcomes of the research point towards a logic and workflow that could be applied to any productised building element, involving: product mapping according to material and element type visualisation of high level […]

Building Design and DFMA, Fire Safety, Building Materials & Systems, Sustainable Materials & Products  ·  Lendlease Digital, Sumitomo Forestry Australia, Monash University, The University of Melbourne

CRC#18 addresses the lack of data-informed product evaluation methods in construction, through the benchmarking of nine long-span, low carbon floor systems. The key outcomes of the research point towards a logic and workflow that could be applied to any productised building element, involving:

  • product mapping according to material and element type
  • visualisation of high level benchmarking findings for use during early building design
  • synthesis of detailed benchmarking findings to enable transparent discussion of decision priorities

    This framework can be used as the basis for: further product benchmarking; evaluation and selection of most suitable products given an explicit set of selection priorities; and future product design development.
https://player.vimeo.com/video/689242035?h=68fea8de37

Architecture and Building Design, DfMA, engineering, Environmental Performance, Industrialised Construction, Prefabrication, Sustainability

#19 Hybrid Timber‐Steel Structural Systems for Mid to High Rise Buildings – Phase 1 Scoping Study

Mid-to-high-rise buildings in Australia are mainly constructed using reinforced concrete structures and have large carbon footprints. Advanced manufacturing of engineered timber products, such as CLT and Glulam, as well as cold formed steel/high strength steel, with high strength-to-weight ratio, have paved the way for construction of those buildings, using hybrid timber-steel structural systems with a […]

Sustainable Materials & Products  ·  BlueScope, Hyne & Son, Monash University, The University of Melbourne, Queensland University of Technology

Mid-to-high-rise buildings in Australia are mainly constructed using reinforced concrete structures and have large carbon footprints.

Advanced manufacturing of engineered timber products, such as CLT and Glulam, as well as cold formed steel/high strength steel, with high strength-to-weight ratio, have paved the way for construction of those buildings, using hybrid timber-steel structural systems with a reduced carbon footprint.

Lightweight hybrid timber-steel systems may also enable a reduction in construction cost and time by allowing a DfMA approach to be taken to design and construction, and allowing the manufacturing of building components offsite.

Despite the potential of hybrid structures, and unlike North America and Europe, the high-rise building market in Australia is still dominated by concrete structures, and the use of steel and timber has made few in-roads into this market.

This project will review developments in hybrid timber-steel buildings and identify the barriers to the take-up of this technology in Australia, with a focus on medium and high-rise buildings.

Image credit: 547 Ann Street Fortitude Valley, QLD, Fulton Trotter Architects, Bligh Tanner and Kane Construction. CLT supplied by Xlam.

design for manufacturing and assembly, DfMA, hybrid steel-timber structures, Steel structures, timber structures

#20 Systems and methods for robustness of mid-rise light gauge steel (LGS) buildings – Phase 1 Scoping Study

Unlike hot-rolled steel buildings, where the robustness requirement can be easily met with the use of bolted or welded joining methods with high tensile resistance for connecting structural members, the connections in LGS buildings are made in the form of screws and rivets with low tensile resistance, and thus they are usually vulnerable to progressive […]

Building Materials & Systems, Structural Optimisation  ·  BlueScope, The University of Melbourne, Monash University

Unlike hot-rolled steel buildings, where the robustness requirement can be easily met with the use of bolted or welded joining methods with high tensile resistance for connecting structural members, the connections in LGS buildings are made in the form of screws and rivets with low tensile resistance, and thus they are usually vulnerable to progressive failure.

This project will develop cost-effective systems and design methods to achieve suitable robustness in LGS buildings. The success of this study will promote the practical application of LGS to mid-rise construction markets.

https://player.vimeo.com/video/689242722?h=fc5441f24f

Architecture and Building Design, engineering, Innovation, Materials, Steel structures

#22 Generative design and BIM-based Design Automation methods for Steel Framed Buildings – Phase 1 Scoping Study

Light gauge steel (LGS) offers significant advantages over other materials including lightweight, quicker construction times, non-combustibility and resistance to rotting, shrinking, warping and termite attack. Today, it is not clearly understood which tools and inputs should be considered at the early planning phase in order for an LGS solution to be considered a viable structural […]

BlueScope, The University of Melbourne, Queensland University of Technology

Light gauge steel (LGS) offers significant advantages over other materials including lightweight, quicker construction times, non-combustibility and resistance to rotting, shrinking, warping and termite attack.

Today, it is not clearly understood which tools and inputs should be considered at

the early planning phase in order for an LGS solution to be considered a viable structural construction alternative to timber, steel and other structural systems, particularly in mid-rise building applications.

This project will develop computational design and optimisation tools for generating LGS building systems with excellent structural/fire performance that will be benchmarked against an existing project that has employed traditional methods.to quantify time and cost savings.

#23 When prefab hits the ground: Barriers and opportunities in the Australian housing market

Traditional construction practices in Australia have been criticised for their focus on the reduction of upfront construction costs at the expense of quality, performance and flexibility. Current and emerging prefabrication processes could provide the efficiency and quality of construction to the traditional built-to-sell market, however by incorporating the possibilities to cater for the recently developing […]

Housing and Urban Design (Affordability), Sustainable Materials & Products  ·  Fleetwood Australia, Sumitomo Forestry Australia, Monash University, Queensland University of Technology

Traditional construction practices in Australia have been criticised for their focus on the reduction of upfront construction costs at the expense of quality, performance and flexibility.

Current and emerging prefabrication processes could provide the efficiency and quality of construction to the traditional built-to-sell market, however by incorporating the possibilities to cater for the recently developing built-to-rent sector is considered to drive it even stronger.

This is because Build-to-rent shifts the housing profit model from capital gains to one based on ongoing rental income, with viability tied to minimising ongoing expenditure.

This scoping study seeks to examine the intersection of these assets and prefabrication processes, to identify opportunities for the housing and construction sector to reduce ongoing greenhouse gas emissions and increase the quality of stock.

https://player.vimeo.com/video/689243209?h=04fd158b0c

Housing, Prefabrication

#24 Next Generation of Robust and Fire-resilient Light Gauge Steel Systems for Mid-Rise Buildings (Umbrella Project) 

This project will investigate the fire resistance behavior of light gauge steel (LGS) floor ceiling systems made of high strength lipped channel sections and truss configurations. It will use small-scale and full-scale fire tests and advanced numerical modelling. It will consider the commonly used sub-floor and ceiling materials, investigate the mechanical properties of floor and […]

Fire Safety, Building Materials & Systems, Structural Optimisation  ·  BlueScope, Queensland University of Technology, The University of Melbourne

This project will investigate the fire resistance behavior of light gauge steel (LGS) floor ceiling systems made of high strength lipped channel sections and truss configurations. It will use small-scale and full-scale fire tests and advanced numerical modelling. It will consider the commonly used sub-floor and ceiling materials, investigate the mechanical properties of floor and ceiling materials and associated connections at ambient and elevated temperatures, and study their effects on the fire resistance levels (FRLs) including those of board fall-off. It will develop FRL tables and spreadsheet-based design tools for all the selected LGS floor configurations for inclusion in fire design handbooks.

Light gauge steel (LGS) offers significant advantages over other construction materials such as easy to install and resistant to rotting, shrinking and termite attack. However, the structural robustness to resist progressive collapse under localised damage due to accidental loads is a critical concern in LGS systems. This is particularly the case given the connections in LGS buildings are usually made via screws and rivets with low tying resistance.

This project will develop cost-effective structural solutions for robustness of LGS structures to promote their applications in mid-rise construction markets such as offices, apartments, hotels, hospitals, student accommodation and aged care facilities.

#25 Operational Excellence framework of steel fabrication and processing in the OSM and prefabrication sector (Phase 1)

In the manufacturing of modules off-site, steel fabrication often comes with many challenges, including supply chain reliability and clarity, the need for efficient production at both the steel producer and the modular builder end, and the flexibility for customisation. This project seeks to find new methods of efficient production and new ways of collaborating in […]

Sustainable Materials & Products, Business Model Innovation, Supply Chain Management, Logistics, Platforms and Process  ·  BlueScope, Fleetwood Australia, Monash University, The University of Melbourne, Ynomia

In the manufacturing of modules off-site, steel fabrication often comes with many challenges, including supply chain reliability and clarity, the need for efficient production at both the steel producer and the modular builder end, and the flexibility for customisation.

This project seeks to find new methods of efficient production and new ways of collaborating in the steel fabrication supply chain from different perspectives such as monitoring, sustainability performance, efficient product platforms, innovative manufacturing techniques, transport and logistics and efficient communications.

Phase 1 of this project is a scoping exercise to review the current state of the market and a comprehensive technology review.

Data interoperability, Product Platform, Steel structures, Supplier relationships, Supply Chain

#26 New materials for windows of the future

Double-glazed windows are a norm in many countries across Europe, Asia and North America due to their effective reduction of heat loss (~30%) compared to single -glazed windows. However, in Australia, only 10% (approx.) of current window installations are double-glazed. This is in part owing to the temperate climate across many parts of Australia, but […]

Building Operation and Performance, Building Materials & Systems, Sustainable Materials & Products, Environmentally Sustainable Design  ·  Ultimate Windows, Monash University

Double-glazed windows are a norm in many countries across Europe, Asia and North America due to their effective reduction of heat loss (~30%) compared to single -glazed windows.

However, in Australia, only 10% (approx.) of current window installations are double-glazed. This is in part owing to the temperate climate across many parts of Australia, but equally the high cost of double glazing. Material science has made rapid progress over the last two decades resulting in the development of many new advanced materials and coatings.

This project is focussed on providing a critical assessment of the opportunities to apply new materials and coatings to reduce the cost, and improve the performance and ease of installation of double-glazed windows.

Building Transformation, Coatings, Double Glazed Windows, Energy Efficency, Polymers

#27 Environmental Decision-Support for Structures

There is a growing demand for reliable methods to rapidly assess and compare the environmental impacts of alternative building solutions. Approaches based on the Life Cycle Assessment (LCA) methodology are most commonly recognised by industry and academia; however, producing accurate results under this framework requires highly specialised skills and research effort that prevents their ready […]

Environmentally Sustainable Design, Energy, Life Cycle Assessment, Sustainable Materials & Products  ·  BlueScope, Monash University, The University of Melbourne

There is a growing demand for reliable methods to rapidly assess and compare the environmental impacts of alternative building solutions. Approaches based on the Life Cycle Assessment (LCA) methodology are most commonly recognised by industry and academia; however, producing accurate results under this framework requires highly specialised skills and research effort that prevents their ready incorporation into the design of most buildings.

The main objective of this project is to generate a knowledge base to inform the development of decision-support systems, supporting environmentally efficient building design.

Decision Support, LCA, Steel structures, Sustainability

#28 Componentised Internal Wall Systems for Multi-residential Applications

Internal wall systems in multi-residential applications continue to rely on labour intensive and wasteful on-site processing despite advances in prefabrication and other aspects of multi-res construction. Described performance requirements for internal walls rely heavily on craftsmanship and supervision – when these fail, significant and costly legacy issues arise. A different approach is required to the […]

Building Materials & Systems, Digital and Automated Fabrication (Robotics), Life Cycle Assessment  ·  Lendlease Digital, Monash University, The University of Melbourne

Internal wall systems in multi-residential applications continue to rely on labour intensive and wasteful on-site processing despite advances in prefabrication and other aspects of multi-res construction.

Described performance requirements for internal walls rely heavily on craftsmanship and supervision - when these fail, significant and costly legacy issues arise.

A different approach is required to the design of internal walls; one which considers modularity rather than customisation, which provides a model for costing legacy and life-time value, and which allows services and performance-based criteria to be integrated in a controlled, off-site environment.

https://player.vimeo.com/video/691110453?h=a22f5a0a3b

Advanced Manufacturing, Architecture and Building Design, Building Operations, Business Processes, Circular Economy, Facility Management, Industrialised Construction, Materials, Prefabrication, Workforce Management

#30 Critical Path IMPACT through Productisation

The critical path coordinates and supports construction planning and execution, and defines the prioritisation and interdependence of tasks. The resulting build program establishes a timeline, informed by the production modes, plans and management practices. New building production systems and planning arrangements have only partially resulted in achieving the construction phase productivity gains and performance improvements […]

Business Model Innovation, Building Design and DFMA  ·  Lendlease Digital, Monash University, The University of Melbourne

The critical path coordinates and supports construction planning and execution, and defines the prioritisation and interdependence of tasks.

The resulting build program establishes a timeline, informed by the production modes, plans and management practices.

New building production systems and planning arrangements have only partially resulted in achieving the construction phase productivity gains and performance improvements promised by their introduction.

This project will examine the roadblocks to the effective impact on transforming construction programs, to establish the context and conditions of future project timelines.

Critical Path Analysis, Dynamic Scheduling, Impact, Integration, Product approach, Project Anatomy

#31 Demystifying Volumetric Construction: A Study of the Bathroom Pod

The potential benefits of volumetric construction include faster builds, improved quality, and reduction in waste. However, increased transportation costs, structural redundancy, and increased overheads can dilute these benefits, limiting their uptake. Within the Australian construction industry, the bathroom pod is one of the few volumetric assemblies that has become commonplace, and considered an acceptable method […]

Building Design and DFMA, Business Model Innovation, Construction Management, Platforms and Process, Supply Chain Management, Logistics  ·  Lendlease Digital, Monash University, Queensland University of Technology, The University of Melbourne

The potential benefits of volumetric construction include faster builds, improved quality, and reduction in waste.

However, increased transportation costs, structural redundancy, and increased overheads can dilute these benefits, limiting their uptake. Within the Australian construction industry, the bathroom pod is one of the few volumetric assemblies that has become commonplace, and considered an acceptable method of delivering bathrooms in multi-storey buildings.

However, the degree to which manufacturing methodologies have been adopted in the design and delivery of bathroom pods varies.

This project unpicks the complexities of a volumetric construction through the lens of the bathroom pod, examining business models, design approaches, and production strategies.

Bathroom pods, design for manufacturing and assembly, DfMA, Modular construction, Productisation, Volumetric construction

#32 Acoustic flanking performance of mid-rise light gauge steel (LGS) structures

The project aims to develop a robust method for predicting the acoustic flanking performance of floor and wall systems in mid-rise LGS buildings. The resulting design recommendations will give the building community confidence about how to reliably design and construct LGS buildings.

Building Design and DFMA, Building Materials & Systems, Housing and Urban Design (Affordability), Sustainable Materials & Products, Construction Safety and Wellbeing, Building Operation and Performance, Computational Design  ·  BlueScope, Monash University, The University of Melbourne

The project aims to develop a robust method for predicting the acoustic flanking performance of floor and wall systems in mid-rise LGS buildings. The resulting design recommendations will give the building community confidence about how to reliably design and construct LGS buildings.

Acoustic, Australian Building Industry, Computational design, DfMA, Digital Engineering, engineering, Flanking, Impact, Light-gauge steel structures, Steel structures, Validation

#33 Evaluation of emerging technologies for remote (virtual) inspections of building work

Remote (virtual) building inspections are expected to reduce the time and travel needs required by traditional in-person inspections while maintaining (or enhancing) the integrity and rigor of the inspection process and outcome. However, the effectiveness and suitability of technologies for remote building inspections are not fully understood and rigorously evaluated. This project aims to: 1) […]

Policy and Regulation, IoT, Sensors and Construction Tech, Artificial Intelligence and Machine Learning  ·  Victorian Building Authority, Salesforce.com, Inc., Sumitomo Forestry Australia, The University of Melbourne, Monash University

Remote (virtual) building inspections are expected to reduce the time and travel needs required by traditional in-person inspections while maintaining (or enhancing) the integrity and rigor of the inspection process and outcome. However, the effectiveness and suitability of technologies for remote building inspections are not fully understood and rigorously evaluated.

This project aims to:
1) review best remote inspection practices
2) evaluate digital technologies for remote building inspections
3) develop a guideline for the effective implementation of suitable technologies for remote building inspections.

Outcomes from this project are expected to guide the implementation of technologies and workflows for remote building inspection.  

Digital technology, Regulation and policy, Remote building inspection

#34 Acoustic flanking performance of mid‐rise Light Gauge Steel (LGS) structures – Phase 1 Scoping Study

Light Gauge Steel (LGS) structures have great advantages in terms of lower weight, easier to transport, minimum construction wastes and shorter construction time. Although the resistance of various light gauge systems, including floor and wall systems, under different loading cases has been widely recognised and tested, there is very limited information on the acoustic flanking […]

Sustainable Materials & Products, Building Operation and Performance  ·  BlueScope, Monash University, The University of Melbourne

Light Gauge Steel (LGS) structures have great advantages in terms of lower weight, easier to transport, minimum construction wastes and shorter construction time.

Although the resistance of various light gauge systems, including floor and wall systems, under different loading cases has been widely recognised and tested, there is very limited information on the acoustic flanking performance of LGS structures.

This scoping study lays the groundwork for developing a robust methodology for assessing the acoustic flanking performance of LGS buildings.

Acoustic, Flanking, Light-gauge steel structures, Steel structures, Sustainability

#35 Prefab Housing Solutions for Bushfire & Disaster Relief

This study will investigate the potential for prefabrication and advanced manufacture to be an alternative to traditional construction in providing both short-term and long-term housing solutions for those affected by bushfires and other disasters. Through the research, we hope to understand the complexities and barriers to designing, manufacturing and installing prefabricated modular homes and units […]

Housing and Urban Design (Affordability), Fire Safety  ·  Monash University, The University of Melbourne

This study will investigate the potential for prefabrication and advanced manufacture to be an alternative to traditional construction in providing both short-term and long-term housing solutions for those affected by bushfires and other disasters.

Through the research, we hope to understand the complexities and barriers to designing, manufacturing and installing prefabricated modular homes and units to bushfire impacted regions around the country.

Bushfire, Disaster relief, Prefabrication

#36 Academic validation of performance gap research in energy rating systems

The report Closing the performance gap in Australia’s commercial office sector (produced by Building 4.0 CRC and the Green Building Council of Australia (GBCA)) showed modelled energy performance of Green Star certified buildings is being achieved in operation, as demonstrated by NABERS energy ratings. The GBCA aims to further validate and extend this research through […]

Energy, Environmentally Sustainable Design  ·  Green Building Council of Australia, Monash University

The report Closing the performance gap in Australia's commercial office sector (produced by Building 4.0 CRC and the Green Building Council of Australia (GBCA)) showed modelled energy performance of Green Star certified buildings is being achieved in operation, as demonstrated by NABERS energy ratings. The GBCA aims to further validate and extend this research through an academically peer-reviewed publication.

This project involves undertaking research to understand the outcomes of the Closing the performance gap report in the context of international contemporary academic studies and literature.

Energy analysis, Energy Efficency, Environmental Performance, low-carbon, Regulation and policy, Sustainability

#37 Australian Timber Fibre Insulation Scoping Study

The Australian timber industry generates significant quantities of low-grade by-products, in the form of chips and sawdust, through the manufacturing of sawn and mass timber products. Most problematic among these are the H2 and H3 treated products that are not currently re-purposed into other products. In addition to this timber waste stream, there are large […]

Building Materials & Systems, Sustainable Materials & Products  ·  Hyne & Son, The University of Melbourne, Ultimate Windows

The Australian timber industry generates significant quantities of low-grade by-products, in the form of chips and sawdust, through the manufacturing of sawn and mass timber products. Most problematic among these are the H2 and H3 treated products that are not currently re-purposed into other products.

In addition to this timber waste stream, there are large amounts of other low-to-no value feedstock such as bark (currently exceeding 400,000 tonnes annually), single use timber pallets and other non-timber waste streams such as shredded plastic fibres. These by-products have the potential to be manufactured into higher value fibre insulation products for the Australian market. Currently, such products are not manufactured in Australia with importers servicing the market instead.

This presents a potential opportunity to divert considerable quantities of waste from landfill to produce a high performance, locally made, low carbon, natural fibre insulation product for the domestic and commercial building industry in Australia.

This project is a scoping study with the intention to assess the techno-economic feasibility and opportunities associated with the creation of a timber fibre insulation manufacturing facility in Australia.

Australian Timber, Circular Economy, low-carbon, Manufacturing, Materials, re-cycle, re-use, recycling, Sustainable Building Materials, Timber Fibre, timber structures

#38 Victorian Government Digital Build – Translating theory into practice

This cross-sector collaboration aims to address the gap between theory and practice to facilitate greater uptake of digitally integrated building and offsite construction in Victoria. Three tranches of research will be used to build Victoria-specific evidence about digital building projects, practices and environments: 1) off-site and modular construction hubs2) benefits of digital build3) project applicability […]

Building Design and DFMA, Platforms and Process  ·  A.G. Coombs, BlueScope, Fleetwood Australia, Coresteel Buildings, Lendlease Digital, Monash University, Salesforce.com, Inc., Sumitomo Forestry Australia, Master Builders Association Victoria, Victoria State Government – Jobs, Precincts and Regions, The University of Melbourne, Ynomia

This cross-sector collaboration aims to address the gap between theory and practice to facilitate greater uptake of digitally integrated building and offsite construction in Victoria. Three tranches of research will be used to build Victoria-specific evidence about digital building projects, practices and environments:

1) off-site and modular construction hubs
2) benefits of digital build
3) project applicability decision making framework.

Building on our partners’ expertise and project data, this project will integrate spatial, economic and socio-technical research to align government and industry imperatives for establishing and sustaining a robust, digitally integrated building industry in Victoria.


You can help to achieve a sustainable digitally integrated building industry in Victoria   

Tell us about the key challenges and implications of managing digital assets in building projects. Please respond to a 10-minute anonymous survey, which is part of the Collaborative Research Centre (CRC), Building 4.0 project 38.  The aim of this research is to help with the implementation of digitally integrated building and offsite construction in Victoria.

Here is your link to the survey.

Please complete or respond to sections relevant to you in the survey by Friday, February 3, 2023

If you require any further information or would like to participate in an interview on sustainable data and knowledge assets in the building industry, please contact Lisa Kruesi (lisa.kruesi@monash.edu.au )

Your contribution is vital. We appreciate and value your input to this important research.

DfMA, Digital Twin, Product Platform

#42 Workflow Automation Tools for Home Designs Phase 1 Scoping Study

Volume builders are facing several challenges associated with the manual design of domestic homes where computational design automation can yield advantages, including many variations between house designs, regular design changes according to client requirements, time, resources and turnaround for each tender (cost estimation, drawings, material estimation and so on). An integrated and automated process would […]

Computational Design  ·  Bentley Homes, M-Modular, The University of Melbourne, Queensland University of Technology

Volume builders are facing several challenges associated with the manual design of domestic homes where computational design automation can yield advantages, including many variations between house designs, regular design changes according to client requirements, time, resources and turnaround for each tender (cost estimation, drawings, material estimation and so on).

An integrated and automated process would bring all stakeholders together at the conceptual design phase to achieve a more integrated solution.

The project is focusing on reviewing currently available software and design workflows to propose a cutting-edge workflow for the automation of the residential home design process.

https://vimeo.com/592041847/bfc4188aa8

Automation Workflow, BIM, BIM-integrated detailing, Generative Design, Home Design

#44 Generative Architectural Design Engine

Advancements in machine learning (ML) and artificial intelligence (AI) models that produce graphics have dominated the discussion around computational creativity for the past 5 years. Generative neural networks, like DALLE-2 and Midjourney, can render remarkably detailed, intricate and convincing images, to the point where they can be perceived as ‘creative work’. This project aims to […]

Artificial Intelligence and Machine Learning  ·  Lendlease Digital, Monash University

Advancements in machine learning (ML) and artificial intelligence (AI) models that produce graphics have dominated the discussion around computational creativity for the past 5 years.

Generative neural networks, like DALLE-2 and Midjourney, can render remarkably detailed, intricate and convincing images, to the point where they can be perceived as 'creative work'. This project aims to leverage these advancements to support creative processes in a more complex field: architectural design.

Using a combination of qualitative methods and advanced ML and AI models, our goal is to develop and implement prototypical digital tools, capable of 'proposing' multiple viable architectural design drafts, based on design value and performance. They will be used as a starting point for designers to build upon.

Computational Creativity, digital design, Generative Design

#45 Prefab, Integrated Wall System: Phase 2 – Demonstration House and Market Study

There currently exists significant logistical and material shortage challenges in the residential home construction market. This coupled with a highly competitive environment has translated into most builders focusing on price of delivery, assuming this is the most important aspect to consumers. Builders are also subject to increasing risk with greater supply chain, labour and material […]

Bentley Homes, The University of Melbourne, Ultimate Windows

There currently exists significant logistical and material shortage challenges in the residential home construction market. This coupled with a highly competitive environment has translated into most builders focusing on price of delivery, assuming this is the most important aspect to consumers. Builders are also subject to increasing risk with greater supply chain, labour and material shortages hindering the on time and on budget delivery of homes.

This project tackles this problem through a two-prong approach (1) leveraging of existing work build a demonstration home that utilises a prefabricated wall system that delivers greater energy performance and lower supply chain risk with an integrated system and (2) to better understand the values of home buyers and the role that cost, energy performance and quality play in their decision making.

This project will see the materialisation of the high-performance wall system in the construction of demonstration home in Melbourne, showcasing constructability, performance and the aesthetics of the system.

Prefabrication, Sustainability

#46 Data analytics for structural fibre resources optimisation

The ongoing digitalisation of manufacturing companies enables new potential for optimisation of their processes. With a growing number of sensors implemented in manufacturing systems such as modern large sawmills, a huge volume of data is generated. This data is an important resource to maintain competitiveness. In this project we are using machine learning and data […]

Artificial Intelligence and Machine Learning, User Interface, Visualisation and Analytics  ·  Hyne & Son, Queensland University of Technology

The ongoing digitalisation of manufacturing companies enables new potential for optimisation of their processes. With a growing number of sensors implemented in manufacturing systems such as modern large sawmills, a huge volume of data is generated. This data is an important resource to maintain competitiveness.

In this project we are using machine learning and data analytics approaches to explore the huge volume of data collected by Hyne Timber across various stages of production, to uncover new insights and avenues for future investigation.

Data Analytics, Machine Learning

#57 Wind Comfort Simulation and New Engineering Design Process

For a typical engineering project, Engineering design (upstream) and operation downstream) commonly follow a linear process through multiple contracting parties. Such a process is inefficient and unsustainable for continuous improvement and IP retainment. To resolve such dilemmas in building wind comfort design, Lendlease Digital collaborates with Monash University to develop a new pathway by coupling […]

Computational Design  ·  Lendlease Digital, Monash University

For a typical engineering project, Engineering design (upstream) and operation downstream) commonly follow a linear process through multiple contracting parties. Such a process is inefficient and unsustainable for continuous improvement and IP retainment.

To resolve such dilemmas in building wind comfort design, Lendlease Digital collaborates with Monash University to develop a new pathway by coupling cutting-edge multidisciplinary technologies, including wind tunnel experiments, numerical simulations, and field testing.

The new pathway will improve efficiency by introducing a feedback loop to the system, to date an unprecedented approach to wind design for the built environment. Potentially, this pathway can also quickly transform comfort design within other engineering disciplines, for example, fire, water, and thermal.

Aerodynamic, Computational fluid dynamics, Pedestrian winds, Wind engineering

#59 Innovative Steel–Timber–Concrete Composite StrongFloor

This project aims to develop a novel structural flooring system covering mid- to long-spans that: minimises material use provides the possibility of fast and modular construction reduces manufacturing and construction costs improves space quality and aesthetic look complies with the requirement of Australian standards and BCA. The initial phases are an extension of existing experimental […]

Sustainable Materials & Products, Life Cycle Assessment, Building Design and DFMA, Product & Process Efficiency, Structural Optimisation, Computational Design, Prefabrication & Advanced Manufacturing  ·  VIRIDI Group, The University of Melbourne

This project aims to develop a novel structural flooring system covering mid- to long-spans that:

  • minimises material use
  • provides the possibility of fast and modular construction
  • reduces manufacturing and construction costs
  • improves space quality and aesthetic look
  • complies with the requirement of Australian standards and BCA.

The initial phases are an extension of existing experimental knowledge and the development of reliable numerical and analytical models. Later stages of the project will include optimising the floor components.

Acoustic, BIM, BIM-integrated detailing, Bushfire, Computational design, DfMA, Engineered Wood Products, Flanking, hybrid steel-timber structures