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EXECUTIVE SUMMARY 
This project aimed to integrate computer vision and artificial intelligence (AI) technologies 
for productivity monitoring on level crossing removal sites. This report presents the findings 
and recommendations from a comprehensive trial conducted at the Dublin Road Level 
Crossing Removal site in Ringwood East, Victoria. The primary objective of this initiative 
was to explore the potential of automated data collection and analysis using visual data 
(images and videos) to enhance the accuracy, efficiency, and real-time monitoring of 
productivity metrics. Key focus areas included tracking earth removal volumes, equipment 
utilisation, labour deployment, and overall site activity. Through a collaborative effort 
involving the Level Crossing Removal Project (LXRP), The University of Melbourne, and 
technology provider Sightdata, a robust computer vision system was developed and 
deployed at the Dublin Road site. This system leveraged computer vision and AI algorithms 
to detect and track objects, count bucket loads, monitor truck movements, and identify 
personnel numbers on-site while ensuring privacy requirements were met.  
The trial yielded promising results, demonstrating the capability of computer vision to provide 
reliable productivity insights. Notably, the AI model exhibited strong performance in counting 
bucket loads of dirt, with count accuracy rates ranging from 89% to 99% across multiple 
days. However, challenges were observed in people counting, with a tendency to 
undercount larger groups; and object detection, where vehicles were prone to overcounting 
during peak activity hours. Compared to traditional manual data collection methods, which 
are susceptible to human error, inefficiencies, and delays in reporting, the computer vision 
approach offered several advantages. These include real-time monitoring, reduced labour 
costs, and the potential to gain timely insights not previously available. While the trial 
highlighted the significant potential of computer vision in construction productivity 
monitoring, it also identified areas for improvement. Environmental factors, such as sun 
glare, lighting conditions, and occlusions, were found to impact model performance. 
Additionally, the complex interactions between various equipment types and the diverse 
range of machinery used on construction sites posed challenges for automated tracking 
efforts, especially when attempting to distinguish between similar equipment. The project 
also faced additional challenges related to onsite acceptance from workers who were 
concerned about privacy related issues for the workforce. 
To address these challenges and facilitate broader adoption of computer vision 
technologies, the report provides recommendations focused on optimal camera placement, 
additional site-specific training, stakeholder engagement, and the establishment of 
governance structures. Emphasis is placed on collaborating with site teams and workers to 
ensure transparency, address privacy concerns, and foster a culture of innovation while 
prioritising worker safety and rights. Looking ahead, the report explores future applications 
of computer vision and AI in areas such as automated tracking of personnel, equipment 
uptime monitoring, personal protective equipment (PPE) detection, and real-time footage 
integration. Additionally, the potential for extending these technologies to earthworks 
monitoring, environmental compliance, and civil infrastructure productivity tracking is 
highlighted, highlighting the versatility and scalability of computer vision solutions in 
construction. In conclusion, the Dublin Road Level Crossing Removal trial has demonstrated 
the transformative potential of computer vision and AI in revolutionising construction 
productivity monitoring. By addressing the identified challenges and fostering a collaborative 
approach with stakeholders, the LXRP and the construction industry more broadly are well 
placed to adopt these cutting-edge technologies, driving efficiency and innovation across 
the construction industry.  
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1. PROJECT OVERVIEW 
1.1 Introduction 
This report presents the findings and recommendations from a pioneering initiative 
undertaken by the LXRP to integrate computer vision and artificial intelligence (AI) 
technologies for productivity monitoring on construction sites. The primary objective of this 
initiative was to explore the potential of automated data collection and analysis using visual 
data (images extracted from videos) to enhance the accuracy, efficiency, and real-time 
monitoring of productivity metrics. The report covers the following key aspects:  
1. Project Overview and Objectives: Background on the LXRP and the motivation for 
adopting computer vision technologies. Specific objectives and goals for productivity 
monitoring, including tracking earth removal volumes, equipment utilisation, labour 
deployment, and site activity.  
2. Literature Review: Overview of existing research and studies on using computer vision 
for productivity monitoring in construction. This explores the different approaches, including 
sensor-based methods and computer vision-based techniques. Case studies are also 
presented demonstrating the application of photogrammetry, video analysis, simulations, 
and license plate recognition for earthmoving productivity monitoring.  
3. Methodology and Approach: Details on the collaborative effort involving LXRP, The 
University of Melbourne, and technology provider Sightdata. Development and deployment 
of the computer vision system at the Dublin Road Level Crossing Removal site in Ringwood 
East, Victoria. Explanation of the AI algorithms employed for object detection, earthwork 
volume assessment, truck movement monitoring, and personnel analysis.  
4. Trial Results and Findings: Evaluation of the computer vision system's performance in 
various productivity metrics, such as bucket load counting, people counting, and object 
detection. This section includes a comparison with traditional manual data collection 
methods, highlighting advantages and limitations. Finally, challenges are identified as well 
as areas for improvement, including environmental factors and complex equipment 
interactions.  
5. Recommendations and Future Applications: Recommendations for optimal camera 
placement, stakeholder engagement, and the establishment of governance structures. 
Exploration of future applications, including automated tracking of personnel, equipment 
uptime monitoring, safety detection, and real-time footage integration. Potential for 
extending computer vision technologies to earthworks monitoring, environmental 
compliance, and civil infrastructure productivity tracking.  
6. Implementation Considerations: Discussion on the role of stakeholders, such as 
workers, in fostering innovation while ensuring worker rights and safe working conditions. - 
Implementation guides focused on stakeholder engagement, justification, pilot projects, 
training, and communication.  
7. Conclusion: Summary of the potential of computer vision and AI in improving 
construction productivity monitoring. Outlines challenges and the need for fostering a 
collaborative approach with stakeholders to drive efficiency, safety, and innovation across 
the construction industry. Finally, the success of the Dublin Road Level Crossing Removal 
trial is assessed, highlighting the potential benefits, challenges, and future opportunities for 
broader adoption and integration of computer vision technologies in the construction sector.  
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1.2 Background and Problem Statement   
The current method of recording productivity on construction sites relies heavily on manual 
inputs provided by the various project alliances. However, this approach has inherent 
limitations that limit the accuracy and efficiency of data collection and, therefore, the results. 
One of the major issues is the frequent incompleteness and bias in the data, which severely 
restricts the insights gained from on-site performance indicators. Because the data relies on 
manual reporting, it is susceptible to human error, leading to inaccurate and inconsistent 
productivity measurements that can misrepresent the actual progress of the project.  
Furthermore, gathering data manually is a time-intensive process that diverts valuable 
labour resources away from core construction tasks. This diversion not only affects 
productivity but also introduces the risk of delays and inefficiencies in the project timeline. 
Additionally, the painstaking effort required for accurate data collection and record-keeping 
can be burdensome and may not always provide an accurate reflection of the project's true 
productivity.  
To address these challenges and enhance productivity monitoring, it is imperative to explore 
more automated and technologically advanced solutions that can provide real-time, 
accurate, and unbiased data on on-site performance. Such innovations can not only 
streamline the data collection process but also free up labour resources to focus on essential 
construction activities, ultimately leading to more efficient and reliable project outcomes. 

1.3 Objectives 
Integrating visual data and technology has become a transformative force in construction, 
offering a means to gain profound insights, make well-informed decisions, and significantly 
enhance project outcomes. This approach involves the autonomous capture, analysis, and 
interpretation of visual information, encompassing images, videos, and three dimensional 
(3D) models, to comprehensively understand and monitor various facets of the construction 
process in real time.  
At the core of this innovation lies the utilisation of AI and machine learning (ML) algorithms, 
which play a pivotal role in further processing and comprehending visual data. These 
algorithms can extract invaluable insights and productivity measures from the visual 
information, enabling real-time decision-making in construction projects. For instance, AI 
algorithms can be employed to track and analyse the movements of construction equipment 
on-site by harnessing visual data. AI can monitor their usage, movement patterns, and 
utilisation rates by proficiently recognising and identifying different equipment types.  
This wealth of information drives the deployment of equipment, facilitates proactive 
maintenance planning, and ultimately enhances the overall operational efficiency of 
construction projects. By harnessing the power of visual data and AI, construction 
stakeholders can embark on a transformative journey toward achieving greater precision, 
efficiency, and productivity in their endeavours. 
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2. LITERATURE REVIEW:  
COMPUTER VISION FOR 
PRODUCTIVITY MONITORING  
Automated productivity monitoring brings many advantages to construction activities. It 
swiftly identifies potential project issues, enhances the likelihood of timely task completion, 
and reduces costs (Chen et al., 2022).  
Earthwork activity is not just a component but the backbone of any construction project. It 
encompasses the excavation, transportation, filling, and compaction of soil. These tasks 
necessitate heavy machinery, such as excavators, trucks, and bulldozers, and are costly, 
potentially inflating the construction project's expenses. Hence, there is an urgent 
requirement to boost the productivity of construction equipment to enhance overall 
productivity and meet cost control objectives (Rezazadeh Azar & McCabe, 2012b).  
Numerous research studies have developed automated approaches to monitoring the 
productivity of construction equipment. Various technologies have been employed to 
estimate the duration of equipment operation, quantify the amount of soil, and analyse the 
factors that influence productivity. By optimising the utilisation of construction equipment 
and resources, it sets the stage for improved efficiency and cost control. In contrast, manual 
equipment productivity monitoring is laborious and ineffective (Chen et al., 2022).  
Tracking and analysing equipment efficiency is the first step towards enhancing productivity. 
Traditional methods rely on manual observation and recording of operational progress, 
which is time-consuming, expensive, and prone to errors. But with advancements in sensing, 
advanced cameras, information technology, wireless communication, and Artificial 
Intelligence, we now have the tools to automate monitoring construction equipment's 
productivity, making it more efficient and accurate (Chen et al., 2022).  

2.1 Artificial Intelligence to Monitor Productivity 
AI is a data-driven approach that has revolutionised the field of engineering. In the 
construction industry, it is a game-changer used for various tasks, including monitoring 
construction site progress, planning, and designing through generative AI, robust fleet 
management, risk mitigation, workers’ safety, and pre-fabrication of structures. Its versatility 
and potential for automation make it an exciting and invaluable tool in the construction 
industry, promising a future of enhanced productivity and cost control (Abioye et al., 2021).  
AI relies on data generated from sensors and manual logs to construct intelligent models 
that can learn patterns from the data and can be used to predict tasks. This includes five 
stages (Chen et al., 2022; Géron, 2022) listed below and shown in Figure 1:  

• Data acquisition: data from sensors and logs are acquired from the construction 
sites, suppliers, contractors, and other personnel involved. Sensors can be of any 
type, including cameras, accelerometers, GPS, etc. Manual logs often involve the 
logbook containing the activities, timings, and other information.  

• Data Cleaning: Often, we encounter missing data points, corrupted samples or 
incorrect values being aggregated. The data is cleaned using specific algorithms and 
expert knowledge to produce a clean and consistent dataset.  
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• Feature Extraction: To build a model, specific characteristics of the data samples are 
studied and identified to represent them. These patterns help AI models recognise 
similar patterns when fed new samples.  

• Classification/Regression: This step builds AI models specific to applications. For 
example, to classify whether a dump truck is present in the video frame, we can train 
an AI model to classify each frame and output a response either “Yes” or “No”. On 
the other hand, if we want to predict the productivity of the dump truck for a given 
day based on the previous day and consider whether the regression model will 
produce an output (a number) of, say, “4 hours” or “10 hours”. For example, Activity 
Duration, Cycle Time, and Productivity all require regression models. Both 
classification and regression models are often used in parallel to generate outputs. 
For example, if we want to monitor the productivity of a construction site using video 
cameras, we need to identify dump trucks using classification models in each video 
frame and then estimate the productivity of dump trucks by analysing their 
movements from the videos using regression models.  

• Prediction: The output response from the AI model is the predicted results. This could 
include Activity Duration, Cycle Time, Productivity, etc.  

 
Figure 1. Typical data processing stages followed by AI algorithms 

2.2 Monitoring Equipment Productivity 
Equipment productivity monitoring can be divided into two main categories: sensor-based 
methods and computer vision (CV)-based approaches (Chen et al., 2022). Figure 2 shows 
the two major methods employed in the construction industry to monitor productivity.  

 
Figure 2. Two types of monitoring equipment productivity in the construction sector 
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Sensor-Based Methods 
Sensor-based methods install sensors and tags [e.g., radio frequency identification (RFID), 
global positioning system (GPS), ultra-wideband (UWB), inertial measurement unit (IMU), 
etc.] on the equipment and the construction site to collect the position and pose information 
of the equipment. Accordingly, the work states and activities of the equipment are identified 
by analysing the data collected from cameras or sensors. For example, the location and 
trajectory data collected from the sensors can be used to estimate the activity of the 
equipment directly. Figure 3 shows the hierarchy and classification of sensor-based 
methods. 
 

 
Figure 3. Classification and hierarchy of sensor-based monitoring methods 

Computer Vision-based Methods 
CV-based methods collect equipment operation data from site surveillance cameras, such 
as videos or images. The camera's visual data are processed with CV-based methods (e.g., 
machine learning and deep learning) to identify equipment activity. Finally, based on the 
activity information, the equipment's productivity can be estimated by equipment operation 
time or soil quantity (Chen et al., 2022).  
A general CV-based equipment monitoring framework consists of several steps. First, 
equipment detection recognises the equipment in the image or video frames. Next, different 
pieces of equipment are continuously tracked in all video frames. The detection and tracking 
methods provide the equipment's spatial position and movement information. Finally, activity 
recognition and pose estimation are conducted to evaluate the equipment's work states, 
which are necessary for productivity analysis (Chen et al., 2022). Figure 4 shows the three 
main approaches to monitoring productivity using computer vision.  
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Figure 4. Classification of vision-based systems to monitor equipment productivity 

Tables 1, 2 and 3 summarise existing research in the literature. Table 1 summarises the 
works on equipment detection and tracking. Likewise, Table 2 and Table 3 provide work 
on equipment activity detection and productivity analysis. 
Equipment Detection and Tracking 

Table 1. List of various equipment detection methods (Chen et al., 2022) 

Detection 
Methods 

Type References 

Feature-based Histogram of Gradients (HoG) + Support 
Vector Machine (SVM) 

(K. Kim et al., 2017; 
Rezazadeh Azar et al., 2013; 
Rezazadeh Azar & McCabe, 
2012b, 2012a; Tajeen & Zhu, 
2014) 

HoG, colour, hue-saturation + SVM. (Memarzadeh et al., 2013) 

Colour (Zou & Kim, 2007) 

Gaussian Mixture 
Model (GMM) 

GMM (Bügler et al., 2014, 2017) 

GMM + Bayes Network (H. Kim et al., 2016) 

GMM, Bayes Network, CNN (Chi & Caldas, 2011) 

Marker-based Barcode marker + HoG + SVM (Azar, 2016) 

Tracking-Learning-
Detection (TLD) 

Trajectory, Spatial and Gray-value 
variance, Pixel variance 

(J. Kim et al., 2018; J. Kim & 
Chi, 2017) 

Convolutional 
Neural Networks 
(CNNS) 

ResNet-50 (H. Kim, Kim, et al., 2018) 

Faster R-CNN (Chen et al., 2020; Fang et al., 
2018) 

CNN + Long-Short-Term-Memory (LSTM) (J. Kim & Chi, 2019) 

ResNeXt-101 (Roberts & Golparvar-Fard, 
2019) 

Faster R-CNN + Single Shot Detector 
(SSD) + You Only Look Once (YOLO) 

(J. Kim et al., 2020) 
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Equipment 
Detection

Activity Detection

Productivity 
Analysis
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Equipment Activity Detection 
Table 2. Summary of equipment activity detection methods (Chen et al., 2022) 

Method Activities References 

 Excavator Truck  

Feature-based Relocating, excavating, 
swinging 

- (Gong et al., 2011) 

Digging, hauling, dumping, 
swinging 

Filling, dumping, 
moving 

(Golparvar-Fard et 
al., 2013) 

Idling, swinging, loading, 
moving, dumping 

Moving, filling, hauling (Roberts & 
Golparvar-Fard, 
2019) 

Rule-based  Idling, stopping - (Zou & Kim, 2007) 

Loading Loading (Rezazadeh Azar 
et al., 2013) 

Filling - (Bügler et al., 
2014, 2017) 

Bulldozer: excavation, 
spreading; excavator: 
excavation, trenching, 
loading; grader: spreading, 
ditch cutting; roller: 
compaction 

truck: backfilling, 
loading, hauling, 
compaction 

(Rezazadeh Azar, 
2017) 

Dumping, idling Loading, hauling (H. Kim, Bang, et 
al., 2018) 

Idling, travelling, working Idling, working (J. Kim et al., 
2018) 

Convolutional 
Neural Networks 
(CNNs) 

Digging, hauling, dumping, 
swinging 

- (J. Kim & Chi, 
2019) 

Digging, swinging, loading - (Chen et al., 2020) 
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Productivity Analysis  
Table 3. Summary of vision-based works using productivity analysis (Chen et al., 2022) 

Method Activities Calculate 
Operation 
time 

Calculate 
Productivity 

Accuracy References 

 Excavator Truck     

Activity 
Recognition 

Idling, 
stopping 

 Yes - 99.8% (Zou & Kim, 
2007) 

Loading Loading Yes  95% (Rezazadeh 
Azar et al., 
2013) 

Filling  Yes Yes 82.56% (Bügler et 
al., 2014, 
2017) 

Dumping, 
idling 

Loading, 
hauling 

Yes Yes 98.4% (H. Kim, 
Bang, et al., 
2018) 

Idling, 
travelling, 
working 

Idling, 
working 

Yes  94.6% (J. Kim et al., 
2018) 

Digging, 
hauling, 
dumping, 
swinging 

 Yes  90.09% (J. Kim & 
Chi, 2019) 

Digging, 
swinging, 
loading 

 Yes Yes 83% (Chen et al., 
2020) 

Licence 
plate 
recognition  

 Truck 
work 
cycles 

Yes Yes 96.76% (H. Kim et 
al., 2019) 

Matching 
cameras   

 Truck 
work 
cycles 

Yes Yes 97.6% (J. Kim & 
Chi, 2020) 

 

2.3 Case Studies 
In this section, we present five case studies related to productivity monitoring.  
Underground Construction Site Monitoring 
Researchers (Bügler et al., 2014) used photogrammetry and video analysis to monitor the 
earthwork productivity of an underground construction site in Munich, Germany (Figure 5). 
They used photogrammetry images to determine the earth volume excavated and video 
analysis to produce site statistics, such as loading times, idle times, and relevant project 
information. Combining the two data sources (photogrammetry and video analysis) allowed 
the team to measure the machinery productivity and site-specific performance factors.  
A video camera positioned atop a tower crane was placed at the site to capture videos of 
the excavators and dump trucks. Images captured from various perspectives were employed 
for photogrammetry. The designated location for the study was a recently constructed 
underground parking facility in a notably restricted section of Munich. The area necessitates 
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a substantial excavation undertaking to be completed before the initiation of primary 
construction operations. 

 
Figure 5. Excavation site in the downtown area of Munich, Germany (Bügler et al., 2014) 

 
Figure 6. Construction site layout (50 metres diameter) and the corresponding point cloud of the excavation site (Bügler et al., 2014) 

 
Volume calculation Using Photogrammetry 
The quantity of excavated soil on an excavation site is measured by creating a 3D point 
cloud of the site space and using the information to obtain a volume measure. The 
photogrammetry method utilises images captured by a pedestrian worker using a standard 
digital camera as the primary data input source. A computer program is utilised to recognise 
distinctive points in the obtained images using the scale-invariant feature transform (SIFT). 
These unique features are then tracked across the various images, with those present in at 
least three photographs enabling the triangulation of points within the 3D space, ultimately 
culminating in forming a point cloud. 
To compute the volume enclosed by the point cloud (Figure 6), a series of sequential 
procedures must be executed. First, the point cloud is cleaned to eliminate extraneous 
points lying beyond the excavation zone via cluster analysis. Next, a uniform top plane 
encompassing the excavation region is determined through marker points or vertical 
histogram analysis. Finally, the point cloud's volumetric computation is calculated.  
Excavation Tracking Using Video 
Analysing videos comprises four steps: (1) target identification, (2) target tracking, (3) 
assessment of activity status, and (4) event detection processing. 
Target identification focuses on identifying elements within the image that require tracking. 
Upon target detection, a kernel covariance tracker is activated to facilitate target tracking. 
Concurrently, the system estimates the activity status of each entity, determining if it is 
moving or stationary. Moreover, the activity status estimator assesses whether an excavator 
is loading a dump truck. Subsequently, the event detection processor integrates tracker 
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and activity status estimator data to produce comprehensive metrics concerning significant 
on-site occurrences. Figure 7 shows the overview of the approach. 
 

 
Figure 7. Overview of Video Analysis for Detecting Events (Bügler et al., 2014) 

The event detection processor analyses trajectory information from the tracker and the results from 
the activity status estimator. It will then produce necessary statistics to estimate the duration of the 
work activities performed by the excavators and dump trucks. The analysis includes the number of 
dump trucks entering the area, their duration in the region for loading, the quantity of soil loaded in 
each dump truck, and the idle times of machines on-site. Figure 8 shows the sample dump truck 
state estimates and the corresponding event analysis.  

 
Figure 8. Dump truck state estimates and event analysis for a video segment (Bügler et al., 2014) 
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Productivity of Tunnel Earthmoving  
This study (H. Kim, Bang, et al., 2018) integrated construction process simulation and vision-
based context reasoning to measure tunnel productivity analysis. An object detector detects 
excavators and dump trucks in images, inferring the earthwork context. Using the earthwork 
context, the probability of task duration is estimated. This estimation is fed to the 
WebCYCLONE simulation. The estimated task durations from the simulation were identical 
to the actual earthmoving process. Figure 9 shows the overall flow of the approach.  

 
Figure 9. Overview of tunnel earthmoving study (H. Kim, Bang, et al., 2018) 

Construction Site 
The tunnel is currently being constructed utilising the novel Austrian tunnelling technique 
(NATM). The targeted earthmoving process involves the transportation of waste derived 
from excavated materials in a tunnel, including blast rock and soil, through a single 
excavator and seven dump trucks to the temporary disposal area in the tunnel. It also 
involves the external aggregate area.  
Because this process is not included in the critical path of the NATM process, it is possible 
to analyse the productivity independently without considering other processes. In a single 
day, about 680 cubic meters of dirt is generated, and the temporary disposal area can hold 
up to 1500 cubic meters. The NATM process is needed for 600 days for this tunnel 
construction, and a single closed circuit television (CCTV) camera keeps an eye on the 
temporary disposal zone all day. The tunnel videos were recorded at a frame rate of 30 
frames per second at the actual tunnel construction site from 7:38 am to 4:49 pm. All video 
frames were resolutions of 720x480. 
Productivity of Loading and Hauling Tasks 
The state and event information from images are used to analyse the productivity of an 
earthmoving task. The state information refers to the state of an earthmoving task, and the 
event information refers to the start and end times of a cycle of the earthmoving task. The 
loading task works when an excavator and dump truck are within a certain distance. The 
state information of each frame is used to identify the start and end of a loading task. 
The event information of loading cycles can be used to determine a hauling task's start and 
end times. Upon recording the loading cycle's completion time, the dump truck's hauling 
task is initiated. When the dump truck returns to the temporary disposal area, the end time 
of the hauling task is recorded. 
Figure 10 shows the performance of estimating the durations of loading and hauling tasks 
using the vision-simulation process and actual completion. Figure 11 shows the sample 
images of the detection of excavators and dump trucks.  
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Figure 10. Performance of estimating the durations of loading and hauling tasks (H. Kim, Bang, et al., 2018) 

 

 
Figure 11. Sample images of excavator and dump trucks from the site (H. Kim, Bang, et al., 2018) 

 
Construction Site Excavation 
The study (Chen et al., 2020) focused on measuring the productivity of multiple pieces of 
equipment and proposed a framework for automatically analysing the activity and 
productivity of several excavators. CNNs were employed to detect, track, and recognise 
excavators' activities. In addition, the study compiled the excavator's activity time, working 
cycle, and productivity. Figure 12 shows the complete overview of the method.  
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Figure 12. Overview of the proposed approach to productivity analysis (Chen et al., 2020) 

Dataset 
This study collected 351 video clips from 21 construction sites, considering site conditions, 
equipment viewpoints, and excavators' scales and colours. Thirty video clips with a 
resolution of 1280 × 720 pixels and a duration of 264 s were used to test the performance 
of the activity recognition model. Figure 13 shows the sample images.  
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Figure 13. Samples images from the dataset (Chen et al., 2020) 

Excavator detection and tracking 
The framework comprises five major components: excavation detection, tracking, idle state 
identification, activity recognition, and productivity evaluation. The first step is to use a 
detector to identify all the excavators in video frames. The detection results provide two data 
types: equipment type and region. Second, each excavator and its trajectory are tracked 
through detection-based tracking. The tracking results give an identification number and 
bounding boxes for each excavator.  
In successive frames, the centroid coordinates and areas of the excavators' bounding boxes 
will alter, revealing idle states. Then, a 3D CNN model is used to identify the activities of the 
tracked excavators. Based on the results obtained from the activity recognition and idling 
state identification tests, each video frame is assigned a label accordingly. Finally, the 
productivity of each excavator is calculated by combining the activity recognition results with 
the productivity of each excavator. 
 
Activity Recognition and Productivity  
In video sequences, a 3D residual neural network (3D ResNet) was used to recognise the 
excavator's activities (digging, loading, and swinging).  
The productivity of the excavator is based on the activity recognition results. The excavator’s 
productivity is calculated with the cycle time and the bucket payload (measured in Loose 
cubic yards, LCY, per hour) as 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �
𝐿𝐿𝐿𝐿𝐿𝐿
ℎ𝑃𝑃

�  =  
𝐿𝐿𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶
ℎ𝑃𝑃

 ×
𝐴𝐴𝑃𝑃𝐶𝐶𝑃𝑃𝐴𝐴𝐴𝐴𝐶𝐶 𝑏𝑏𝑃𝑃𝑃𝑃𝑏𝑏𝐶𝐶𝑃𝑃 𝑝𝑝𝐴𝐴𝑃𝑃𝐶𝐶𝑃𝑃𝐴𝐴𝑃𝑃 (𝐿𝐿𝐿𝐿𝐿𝐿)

𝐿𝐿𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶
 1 

Figure 14 shows the activity recognition output, and Figure 15 shows the sample productivity 
output.  
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Figure 14: Activity recognition of excavator (Chen et al., 2020). 

 
Figure 15. Example of productivity calculation results (Chen et al., 2020) 

Limitations of the work: 
The detection and tracking results affect the activity recognition performance. When the 
bounding boxes of two excavators overlap, the activity of one excavator might be impacted 
by the activity of the other excavator.  
Furthermore, the video's light condition also influences the activity recognition result. When 
the light is too bright or too dark, it can be challenging to recognise moving features in video 
frames. 
 
Earthmoving Productivity Simulation Using License Plate Recognition 
This study (H. Kim et al., 2019) uses imaging and simulations to present a nonintrusive 
method for analysing earthmoving productivity. The process involves analysing videos 
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recorded at the entrance and exit of a construction site to deduce earth-moving scenarios 
using the dump truck site access log. The site access log is automatically generated through 
a combination of video deinterlacing, a deep convolutional network, and rule-based post-
processing, which includes an algorithm for license plate detection and recognition in an 
unpredictable environment. Simulation-based productivity analysis uses a site access log to 
generate a daily report, the basis for earthmoving resource planning. Figure 16 shows the 
overview of productivity analyses using nonintrusive context documentation.  

 
Figure 16. Earthmoving productivity analysis based on the nonintrusive context documentation (H. Kim et al., 2019) 

The authors use WebCYCLONE for simulation. Figure 17 shows the construction site 
entrance and exit, and Figure 18 shows the detection of licence plate numbers from the 
dump trucks. Figure 18 shows the license plate number detection in sample video frames.  
 

 
Figure 17. Scenes at the construction site's entrance (left) and exit (right) in the case study (H. Kim et al., 2019) 

 
Figure 18. Licence plate detection in video frames (H. Kim et al., 2019) 
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Multi-camera Equipment Matching for Productivity Analysis 
In this case study (J. Kim & Chi, 2020), researchers propose a multi-camera-based 
productivity analysis using computer vision, compared to single-camera-based approaches 
in previous studies. They utilise videos from multiple non-overlapping cameras at the 
construction site. It includes three main steps: (1) placing multiple cameras at different 
locations, (2) monitoring equipment based on single-camera video data, and (3) matching 
the equipment from multiple cameras to assess productivity. The authors used video data 
of 371,125 image frames from the construction site (highway) to validate their approach to 
arrive at an average of 97.6% matching accuracy. Figure 19 shows the overview of the 
proposed approach.  

 
Figure 19. Overview of the proposed methodology for multi-camera vision-based monitoring (J. Kim & Chi, 2020) 

Figure 20 shows the operational states of excavators and sump trucks considered in this 
case study, and Figure 21 shows the process involved in monitoring equipment productivity 
from a single camera. 

 
Figure 20. The case study considers the operational states of excavators and dump trucks (J. Kim & Chi, 2020) 

 
Figure 21. Shows the process of monitoring equipment productivity from a single-camera (J. Kim & Chi, 2020) 
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The project was undertaken on the Cheonan-Asan highway in South Korea, and the site 
was approximately 500 m × 600 m. The job site had three loading zones and three entry 
zones. One excavator was assigned to load soil onto multiple dump trucks in each zone. 
Figure 22 shows the conceptual layout of the cameras on site and the actual images 
collected from the site. 

 
Figure 22. (a) conceptual site layout and (b) images collected from the site (J. Kim & Chi, 2020) 

In Figure 23, we can see the results of multi-camera vision-based equipment matching. At 
the entry zone, two different white trucks (with similar velocities) were captured in the image 
frames T = 1657 and T = 4257, respectively. The method successfully paired them in the 
loading zone at image frames T = 8252 and T = 11447 after interacting with the excavator 
and performing a 'loading' activity in the corresponding service order. 

 
Figure 23. Results of matching the equipment from multiple cameras (J. Kim & Chi, 2020) 

Summary of case studies: 
In the below table (  
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Table 4) we summarise the key points from the five main case studies. 
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Table 4. Summary of case studies reviewed with respect to productivity monitoring 
 

Focus Approach Productivity Analysis Disadvantages 

(Bügler et 
al., 2014, 
2017) 

Underground 
earthwork 

Photogrammetry  
+ 
Video analysis 

The volume of soil 
excavated at regular 
intervals. 
Loading, idle times 

Rain, snow and 
difficult light 
conditions may affect 
the images 

(H. Kim, 
Bang, et 
al., 2018) 

Tunnel Construction-
process simulation 
+ 
Vision-context 
reasoning 
- WebCYCLONE 
simulation 

• Number of dump 
trucks 

• Process cycle per 
hour. 

• Muck removal per 
hour. 

• Muck removal per 
day. 

• Idle time for an 
excavator 

• Idle time for dump 
trucks 

• Rental cost per 
day 

• Unit cost ($/m3) 

Only the muck 
transportation 
process was 
analysed. 
Equipment 
combinations, 
geologic properties, 
and the entire 
tunnelling process 
are not considered 

(Chen et 
al., 2020) 

Construction 
site 

Faster-
RCNN+Deep 
SORT tracker + 3D 
ResNet Classifier 
Uses centroid 

• Activities of 
multiple 
excavators are 
used 

• Productivity is 
analysed using 
LCY per year. 

Cannot distinguish 
between overlapping 
excavators. 
Lighting conditions  
Limited data diversity 

(H. Kim et 
al., 2019) 

Construction 
site 

Videos and   
Simulation 
License Plate 
Recognition 

Analysing videos 
recorded at the 
entrance and the exit. 
The site access log of 
dump trucks to infer 
the earthmoving 
context. 
- WebCYCLONE 
simulation 

Idle times of 
excavators and 
dump trucks account 
for 34% and 41%. 
Object detection 
does not consider 
geometric properties. 
Needs re-training 
when new equipment 
is introduced 

(J. Kim & 
Chi, 
2020) 

Highway 
construction 

CNN-Double 
Layer-LSTM + 
Knowledge-based 
rule 
Multi-camera + 
Queue system 

Dump trucks: 
• Loading time 
• Idling time 
• Inter-arrival 

time 
• Cycle time 

May fail to track 
heavy equipment 
because of 
background clutter, 
no-target objects, 
occlusions, etc. 
Switch IDs during 
tracking.  
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3. EXISTING PRODUCTIVITY 
METRICS 
3.1 Productivity data requirements 
The section on productivity data requirements is of the utmost importance in our report, as 
it establishes fundamental metrics, including production rate, productivity, performance, and 
exemplar. These metrics serve to direct our examination of crew efficiency. The need of 
data collection to improve tracking and analysis on-site is emphasised, and it is explained 
how productivity is monitored on a per-shift basis for each crew. The purpose of this data is 
multifaceted: it facilitates the identification of exemplary performance, facilitates the 
comprehension of downtime causes, assesses the influence of communication, furnishes 
an unambiguous depiction of productivity, assists in forecasting, and guarantees personnel 
uninterrupted work. This section establishes the fundamental basis for optimising 
performance and establishing informed decisions to increase productivity and efficiency on 
construction project. 
Definitions1:  

• Production rate: the total amount of work that is finished in a certain amount of time.  
• Productivity: this metric tracks how well the crew is doing by looking at how much 

work they get done each shift.  
• Performance: calculated by adding up the resources that were planned and the 

ones that were used. 
• Exemplar: the very best work done on a certain task. 

 
Productivity Data Tracking Objectives  
On its construction sites, LXRP places a high priority on monitoring their progress and 
increasing their productivity. The importance of this point cannot be overstated because 
productivity has a direct impact on the scheduling, expenses, and results of a project. LXRP 
can obtain considerable insights into the efficiency with which resources are utilised by 
crews and shifts by monitoring crucial indicators such as production rate, productivity, 
performance, and exemplar work.  
LXRP adheres to the Planning Objective DARUPTO to accomplish continuous 
improvement, which covers the following categories (Level Crossing Removal, 2023): 

• Design: Ensuring that a consistent design is implemented, which will allow teams to 
perform continuous repetitive labour. 

• Access: Ensuring that all work locations are accessible without boundaries. 
• Approval: Acquiring all the essential approvals and permits, including the ability to govern 

the circumstances that were generated by stakeholders in closer proximity. 
• Available: Ensuring that resources such as dependable production equipment and skilled 

labour are readily available. 
• Relocation: All utility services will be safeguarded, and any necessary modifications or 

relocations will be made to them. 
• Unsuitable: Protection of susceptible surfaces that are exposed to weather, streamflow, and 

ground conditions, as well as control of situations that are not acceptable. 
• Procurement: Implementing procurement arrangements that incentivise greater 

productivity. 
 

1 HIVE Research & Development (2023) 
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• Traffic: Managing traffic for haul roads on-site and routes off-site. 
• Out-of-sequence: Getting rid of work that is performed out of sequence. 

 
When it comes to enhancing productivity tracking and analysis on construction sites, the 
data that is collected throughout this monitoring process is both valuable and beneficial. 
There are many important roles that it plays. The first benefit is that it makes it possible for 
LXRP to identify instances of extraordinary performance, thereby providing a benchmark for 
the most efficient output. This technique for benchmarking serves the purpose of 
establishing benchmarks for the highest possible levels of output that crews are capable of 
achieving (HIVE Research & Development, 2024a).  
Second, the data makes it possible for LXRP to better understand the factors that contribute 
to periods of inactivity or inefficiency, which in turn enables the project team to make 
adjustments that are more specific. Through the process of assessing the ways in which 
communication and coordination methods impact production, LXRP can implement targeted 
initiatives that will increase overall efficiency.  
In addition, the data that was collected provides a clear picture of the productivity that was 
achieved under actual site conditions. All of the people who are participating in the project 
can benefit from this knowledge since it enables them to comprehend the levels of 
productivity that have been achieved and the factors that have an effect on those levels.  
As an additional benefit, the data on productivity makes it possible for planners, schedulers, 
and estimators to properly forecast the productivity of crews under situations that are 
comparable. By doing so, the accuracy of project planning is improved, and it guarantees 
that resources are utilised in an effective manner.  
Last but not least, productivity data ensures that crews have regular, repetitive work, which 
ultimately leads to an increase in productivity levels. This is accomplished by providing 
feedback to the design team. The existence of this feedback loop makes it possible to 
continuously enhance and optimise the use of resources throughout the lifecycle of the 
project.  
In general, the thorough data collection and analysis process that LXRP employs as a base 
serve as a foundation for enhancing productivity, improving project outcomes, and ensuring 
resource efficiency on construction sites.  
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3.2 Benchmarking Procedure used in LXRP 
 

Figure 24. Productivity Benchmarking Process Flowchart (Appendix B)  (Level Crossing Removal, 2022) 
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LXRP's Productivity Benchmarking Process is a comprehensive, five-step procedure aimed 
at enhancing the efficiency and effectiveness of key construction activities within its projects. 
The process commences with the establishment of consensus on the Key Activities to 
monitor, which are selected based on their significant impact on the Alliance Work Package 
(AWP) and their potential for continuous improvement due to their repetitive nature over 
prolonged periods. 
The next phase involves the meticulous gathering of planned resources data for Plant, 
Labour, and Materials (PLM), alongside expected productivity rates for these Key Activities. 
This planning stage is critical as it establishes a baseline for performance measurement, 
providing a reference point against which actual productivity can be evaluated. 
As the project unfolds, LXRP rigorously tracks the actual usage of resources, documenting 
the achieved productivity rates in various conditions and circumstances. This enables the 
accurate assessment of resource efficiency and the identification of any discrepancies from 
the initial productivity projections. 
Key to this process is the identification of exemplar performances—instances of optimal 
productivity—which, alongside the analysis of any variances between planned and actual 
outcomes, offer a comprehensive understanding of productivity dynamics. This step is 
crucial for recognising best practices and conditions that lead to high productivity, with the 
intention of replicating these successes in current and future projects. 
The culmination of the process is a strong emphasis on the sharing of knowledge. Insights 
from the benchmarking activities are shared widely, ensuring that successful strategies are 
communicated and leveraged across teams and projects. This collaborative ethos underpins 
LXRP's continuous monitoring and refinement approach, which is integral to the AWP's 
success. 
To facilitate this data-driven process, critical documentation is required to inform anticipated 
productivity rates and resource allocations. The Contractor’s Work Method Statement, the 
Alliance Program & Basis of Schedule (BoS), and the Construction Management Plan are 
foundational documents that detail how resources are proposed to be utilised, the 
scheduling of Key Activities, and the overarching construction methodology and stakeholder 
management plans. 
As Key Activities get underway, Alliances undertake the responsibility of weekly data 
reporting. They document the actual work completed, resources used, and the conditions 
and circumstances of their deployment as per the structured framework provided in 
Appendix E. This regular documentation feeds into LXRP's main goal of establishing 
normalised productivity rates across projects, serving multiple critical functions: it aids in 
identifying the most effective methodologies, supports the calculation of the Cumulative 
Furthermore, it enriches a centralised database accessible to all Alliances and informs 
LXRP's responses to external inquiries. 
Through this diligent and collaborative process, LXRP not only measures but also aims to 
continually enhance productivity. The benchmarking process is a loop of performance 
enhancement that is data-driven and founded on a shared commitment to achieving 
excellence in productivity. 
 
 
 

Table 5. LXRP Productivity metrics (Level Crossing Removal, 2022) 
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No. Phase Data Type Specific Data Collected Purpose 

1 Planning / Pre-
Award Phase 

Plant 
Resources 

• Plant, Labour, 
Materials specifics. 

• Expected 
productivity rates per 
resource. 

To establish baseline 
productivity metrics and 
resource allocation for 
project planning. 

Project Plans • Construction 
Management Plan 

• Alliance Program & 
Basis of Schedule 
(BoS) 

• Contractor’s Work 
Method Statement 

To inform the proposed order 
and method of work and 
resources for Key Activities. 

2 Delivery / Post-
Award Phase 

Actual 
Performance 

• Actual Quantity of 
work per crew per 
shift 

• Actual Resource 
hours used (Plant 
and Labour) 

• Materials used 

To monitor and track actual 
resource usage against 
planned metrics for 
performance assessment 

Conditions & 
Circumstances 

Environmental and 
operational conditions 
affecting productivity 

To analyse the impact of 
various conditions on 
productivity and adjust future 
planning accordingly  

Productivity 
Changes 

Comments on changes in 
productivity from prior 
periods and their drivers 

To identify trends and causes 
of productivity fluctuations for 
continuous improvement. 

3 Reporting / 
Analysis Phase 

Performance 
Variances 

Differences between 
planned and actual outputs, 
resource usage, and 
productivity rates 

To identify and analyse 
deviations from planned 
productivity, facilitating 
targeted improvements. 

Detailed 
Conditions 

Comprehensive recording of 
Conditions and 
Circumstances under which 
the work was performed 

To ensure accurate 
representation of productivity 
metrics under specific 
conditions for better 
benchmarking. 

4 Data 
Submission 

Weekly Data Data submitted weekly via 
productivity templates 

To maintain ongoing records 
and facilitate timely analysis 
of productivity data. 

Final Insights Review of what worked well, 
what could be improved, and 
what was missing after each 
Key Activity 

To share key insights and 
exemplary performances that 
could guide future projects. 

5 Continuous 
Improvement 

Dashboard 
Data 

Data compiled and analysed, 
presented on various 
dashboards 

To visualise and 
communicate productivity 
insights across the program 
for strategic decisions. 

Trend Insights Observations on patterns 
and trends across different 
projects and conditions 

To leverage data-driven 
insights for enhancing 
productivity and 
implementing best practices 
across projects. 
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3.3 Current Challenges and Limitations  
In the field of construction management, particularly in excavation operations, the reliance 
on traditional manual data collection methods presents significant limitations and challenges 
that critically impact project outcomes. These methods, heavily dependent on manual data 
entry and observation, are fraught with potential for human error. Such susceptibility 
introduces considerable inaccuracies in records and reports, skewing productivity 
assessments and complicating effective decision-making. These errors not only affect 
immediate operational decisions but also have long-term implications on project planning 
and resource allocation. 
The manual process of observing and reporting data is characterised by several 
inefficiencies. It is notably resource-intensive, requiring a substantial commitment of human 
labour, which in turn increases operational costs. The need for extensive manpower to track, 
record, and verify data in real-time—or as close to real-time as possible—places a 
considerable burden on the project's budget and logistical planning. Moreover, the laborious 
nature of manual data collection contributes to its time-consuming aspect. Personnel need 
to be continuously present to monitor activities and record data, a process that is both slow 
and susceptible to human fatigue, which can further degrade the quality of the data 
collected. 
This method inherently lacks the capability to deliver data in a timely manner. Reports 
generated manually often experience delays in compilation and dissemination, leading to 
outdated information that guides critical project decisions. These delays can disrupt project 
schedules, potentially leading to cascading delays in project milestones and the inefficient 
use of resources. Additionally, the integrity and auditability of manually collected data are 
often questionable. The manual entry and observation processes are prone to subjective 
interpretations and bias, which can alter the data recorded. This subjectivity makes it difficult 
to maintain consistent quality control and complicates the auditing process, as data 
verifiability becomes an issue. 
In the interview, the site team responded that tracking equipment types and operational 
times manually is particularly challenging. This process involves monitoring which 
equipment is in use and for how long, which is crucial for efficient resource management. 
However, manual tracking is prone to errors, such as misidentification of equipment or 
incorrect logging of operational hours, resulting in inaccurate assessments of machine 
utilisation and operational efficiency (Brett Long, 2024).  
In response to these challenges, there is a pressing need in construction management to 
adopt more sophisticated data acquisition techniques. The shift towards automated data 
collection methods is increasingly seen as a solution to enhance accuracy, reduce labour 
costs, and provide real-time or near-real-time data. Automation in data collection can include 
the use of computer vision technologies that continuously collect and transmit data, reducing 
human error and bias. These technologies not only streamline data collection processes but 
also improve the timeliness of data reporting, enabling more dynamic and responsive project 
management. Ultimately, resolving the inefficiencies of manual data collection is crucial for 
enhancing the overall efficacy and efficiency of construction projects, leading to better 
managed, on-schedule, and within-budget project completions. 
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4. DUBLIN ROAD TRIAL 
4.1 Project Overview 

 
Figure 25. Dublin Road early concept designs (Victroria's Big Build, 2022) 

The project aims to enhance safety, increase train frequency, and improve road network 
reliability by removing the level crossing at Dublin Road in Ringwood East. The removal of 
the boom gates will facilitate smoother and safer travel for pedestrians and road users alike. 
 
Key Components:  

• Rail Trench Construction: To eliminate the level crossing, a rail trench will be constructed 
under Dublin Road. This infrastructure improvement will allow for uninterrupted flow of road 
traffic over the railway line. 

• New Ringwood East Station: Alongside the trench construction, a brand-new Ringwood East 
Station will be built to better serve the community and accommodate increased passenger 
capacity. 

• Upgraded Parking Facilities: The project includes the expansion of car parking facilities, with 
around 460 upgraded parking spaces planned. This expansion aims to support increased 
usage and accessibility to the station. 
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Figure 26. Map of Dublin Road, Ringwood East level crossing removal area (Engage Victoria, 2022) 

Computer vision goals in for Dublin Road: 
The primary goal for the Dublin Road LXRP is to measure the LXRP productivity metrics 
using automated data collection methods combined with AI. This innovative approach aims 
to continuously monitor the volume and rate of earth removal, allowing for real-time 
assessment against project timelines and productivity targets. By dynamically optimising 
resource allocation and methods, we expect to gather accurate data and improve reporting 
efficiency for the construction of the rail trench under Dublin Road in Ringwood East. 
Additionally, computer vision algorithms will be utilised to monitor equipment usage, 
ensuring optimal operation of machinery such as excavators, dump trucks, and bulldozers, 
thus reducing idle times. 
Automated productivity reports generated from visual data will enable quick decision-
making and facilitate continuous improvement in earthwork operations. The ultimate goal 
of this integration of advanced technology is to replace conventional productivity reporting 
methods with real-time and reliable insights from the site. This shift aims not only to 
maintain high operational standards but also to enhance coordination between earthwork 
activities and other site operations, ensuring the project adheres to scheduled timelines 
and achieves efficiency gains. 
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4.2 Automated Data Collection Motivation 
The motivation for automated data collection using computer vision in construction projects 
is driven by the need to increase efficiency, accuracy, reliability and time between recording 
data and being able to analyse and view for the construction site. Traditional methods of 
data collection, typically manual, are often time-consuming, error-prone, and limited in 
providing real-time insights, frequently taking weeks between data being recoded and being 
accessible to the project management team. Integrating AI-driven computer vision 
technology aims to transform this approach by enabling the automation of tracking and 
analysing machinery movements, usage rates, and overall tool utilisation. 
Automated data collection offers continuous, real-time monitoring, which is crucial in 
dynamic project environments where conditions can swiftly change. This high level of 
surveillance guarantees more accurate data, available instantly for making informed 
decisions. AI's ability to recognise various tools and machinery streamlines maintenance 
planning and resource deployment, enhancing productivity and reducing downtime. 
Additionally, computer vision provides detailed analytics on equipment performance, aiding 
project managers in optimising workflows and improving operational efficiency. 
Moreover, the automated data collection method powered by AI has the potential to 
generate metrics and insights not currently available through conventional methods and 
manual recording and reporting of productivity. The forthcoming study will compare these 
automated methods to traditional manual data gathering, highlighting the precision, cost-
effectiveness, and operational enhancements achievable with this advanced technology. 

Table 6. Motivation and benefits of automated data collection through computer vision 

Aspect Benefits of Automated Data Collection 

Accuracy and Reliability Automated systems improve data collection precision, reducing 
human errors common in manual methods. Accuracy of earth 
volume removal (counting truck and bucket swing) 

Efficiency and Reporting Time Provides real-time monitoring and analytics, allowing for swift 
adjustments and decision-making. This real-time data provides 
insight into potential clashes and inefficiencies, enabling proactive 
management and timely interventions to prevent delays or issues. 

Compared to current weekly reporting – Collecting data on a weekly 
basis does not allow for rapid responses to emerging issues 

Deployment Streamlines scheduling and resource allocation, reducing 
equipment downtime and optimising productivity. 

Operational Improvements Offers detailed insights into equipment usage patterns, supporting 
better workflow and operational efficiency. For example, plant that 
is underutilised could be easily identified and re-deployed on other 
more critical tasks. 

 

4.3 Existing Data Collection Methods 
There are a number of variables and processes that can influence the manual data collection 
and reporting for LXRP. Manually documenting work quantity, plant and labour hours, and 
utilisation conditions, alliances are obligated to report on the productivity of resources 
utilised per crew per shift. Plate-number-recorded dump vehicle movements are utilised as 
the foundation for earthwork removal productivity metrics. The on-site project manager is 
provided with manual records of the IN and OUT times, as well as the vehicle type, which 
are maintained by CYCON employees (Spotters). Site engineers complete the tracking 
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spreadsheet (Appendix A) after receiving a digital copy of the IN and OUT records in Figure 
28 from the manager. 

 
Figure 27. Spotters record Truck + Trailer In and Out the site 
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Figure 28. Truck IN & OUT Records 
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Table 7. Data collection example activity – Secondary plant supporting load-out excavator 

Metrics Captured Explanation  

Work Done: 854.3 Bm3 The volume of earth moved, or work completed by the secondary plant. 

Hours Worked: 7.5 The total number of hours the secondary plant operated for this activity. 

Delay: 4.5 hours The duration of delays encountered, specifically due to unsuitable weather 
conditions. 

Start Date/Time: 10/02/2024 
07:00 

The date and time when the activity started. 

Finish Date/Time: 
10/02/2024 14:30 

The date and time when the activity finished. 

Uptime: 7.5 hours The actual productive time, excluding delays. 

Crew: Crew 1 The team assigned to perform the activity. 

Work Zone: Zone 5 The specific area where the activity was carried out. 

Location: OTR The general location or segment of the site where the activity took place. 

 
Explanation of Metrics: 

• Work Done: Captures the volume of material moved, crucial for tracking progress 
and productivity. 

• Hours Worked: Indicates the total time spent on the activity, essential for labour 
and equipment utilisation analysis. 

• Delay: Highlights any interruptions, with specific reasons provided (e.g., weather 
conditions), important for understanding project delays. 

• Start and Finish Date/Time: Provides the timeline for the activity, helping to 
ensure that project schedules are adhered to. 

• Uptime: Measures the effective working time, excluding any delays, which is 
important for evaluating efficiency. 

• Crew: Identifies the team responsible for the activity, useful for accountability and 
performance tracking. 

• Work Zone: Specifies the exact area of the site where the activity is performed, 
aiding in site management and coordination. 

• Location: Offers a broader context of where the activity is taking place within the 
site, useful for logistical planning. 
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Currently, data collection for daily excavation productivity is specifically managed by 
spotters, who track vehicle entries and exits, while the responsibility for reporting this data 
typically falls to junior staff or graduate engineers. Typically, in LXRPs subcontractor 
contracts dictate the frequency and precision of data collection, self-perform costing 
produces more precise results. However, lump sum contracts may provide a reduced level 
of detail and have the potential to overestimate the number of crew members. Although 
there may be variations in the data requirements for different activities, the reporting 
frequency remains consistent. Monitoring task operational periods and equipment types 
presents obstacles. Spotters perform manual data entry during the reporting process, which 
is subsequently imported into template spreadsheets. The Alliance, for the purpose of 
reporting, and LXRP, whose key goal is to enhance productivity in current and future projects 
are the principal stakeholders in this data.  
The daily excavation volumes are substantially impacted by the soil or rock type being 
excavated. Initial visual classification of material to be excavated as Rock or Other Than 
Rock (OTR) impacts the assumed building factor. In this case study the bulk factor was 
taken to be 1.6 and the material classified as rock. Difficulties arise when excavating denser 
rock, frequently necessitating the utilisation of excavators rather than bulldozers; this results 
in increased expenses and duration. Contractor trucks may not be properly equipped for 
haulage of large rocks due to concerns about damage to their trays. 
The absence of a weighbridge presents unique challenges for accurately measuring and 
validating the weight of material removed. Typically, a weighbridge allows for precise 
tracking of loaded and unloaded weights, which directly indicates the amount of material 
transported. Without this, the project relies primarily on truck counts and estimated truck 
capacities to infer the volume of material removed from the site. 
To address this, this trial uses computer vision and AI tools to verify truck counts and loading 
cycles, including tracking bucket counts to monitor material per load. This AI-generated data 
will then be used for manual calculations of earthwork removal on-site, incorporating key 
factors such as fill factor and bucket factor to adjust for material compaction and bucket 
loading efficiency. This approach allows us to achieve accurate volume estimations based 
on AI-captured counts, while using manual adjustments to refine calculations according to 
site-specific conditions. 

4.4 Computer Vision Objectives 
The objective of integrating computer vision technology into the Dublin Road LXRP, 
specifically for earthwork removal, is to optimise operations by enhancing the accuracy and 
efficiency of tracking and analysing a variety of metrics related to labour, equipment usage, 
and environmental conditions. Here are the detailed objectives: 

1. Real-time Monitoring and Data Accuracy: 
• Implement computer vision to provide continuous, real-time monitoring of 

earthwork activities. 
• Capture accurate data on the volume of earth moved, the positioning and 

operation of heavy machinery, and the tracking of progress against the project 
plan. 

2. Labour and Equipment Utilisation: 
• Monitor the number of workers within the camera's field of view (FOV) to 

optimise workforce allocation and ensure that the appropriate number of 
personnel is deployed for effective earthwork removal. 
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• Track the quantity and usage hours of specific types of equipment present in 
the FOV, such as excavators, rippers, dozers, and loaders, to assess the 
effectiveness and efficiency of equipment utilisation. 

3. Operational Efficiency and Resource Optimisation: 
• Use insights from computer vision to identify bottlenecks and inefficiencies in 

the earthwork removal process. 
• Optimise the deployment and utilisation of resources, reducing idle times, 

managing maintenance schedules effectively, and preventing overuse of 
equipment to reduce operational costs. 

4. Comprehensive Metrics and Cumulative Analysis: 
• Collect cumulative metrics such as the total number of shifts, total number of 

workers and equipment, and the total amount of time that equipment is 
operational. 

• Provide a comprehensive overview of earthwork removal activities over time, 
enabling improved resource management and planning methods. 

5. Measurement and Verification: 
• Use units such as cubic meters or bank cubic meters to measure the material 

that has been removed. 
• Determine the total amount of spoil removed based on the load-out excavator 

bucket unloads to trucks and the number of dump trucks leaving the site, while 
considering the types and sizes of trucks. 

• Compare the computed totals with the Fleet Plant Hire Dockets provided by 
the dump site and verify through manual inspections of camera footage and 
evaluations of dockets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29. Weighbridges (Weigh-more Solutions) 
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4.5 Time Series2  
Time series metrics are used to monitor key parameters throughout the earthwork removal 
process, specifically bucket counts and trucks in and out. These metrics will be tracked 
continuously throughout the day, with a focus on days with the highest excavation activity. 
Additionally, equipment count, and labour count will be tracked every 5 minutes of the 
footage. These metrics provide real-time data that helps project managers respond quickly 
to any operational inefficiencies, such as delays in earth removal or unexpected machinery 
downtime. 

Table 8. Time series parameters for earthwork removal 

Metric Description Data Type Frequency 

Labour Count Tracks the total number of people 
detected within the camera's field  

Count Every 5 minutes 

Equipment Count Monitors the entry and exit of trucks to 
gauge material transport volume. 

Count Every 5 minutes 

Trucks In and Out Each piece of equipment's 
active/working hours are tracked to 
monitor uptime within the camera's field 
of view. 

Count Continuous 

Bucket Count Tracks the number of bucket cycles to 
estimate material moved. 

Count Continuous 

 
Cumulative Metrics 
Cumulative metrics aggregate data over the project duration to provide insights into overall 
achievements and resource utilisation, including total bucket cycles and truck movements. These 
metrics are essential for evaluating progress against planned goals and budgets, allowing project 
managers to make data-driven decisions to ensure the project remains on track. 

Table 9. Cumulative metrics  

Metric Description Data Type 

Trucks In and Out Monitors the cumulative entry and exit of trucks to gauge 
total material transport volume. 

Count 

Bucket Counts Tracks the cumulative number of bucket cycles to 
estimate material moved. 

Count 

 

4.6 Hardware 
System Components 

• Sensing Element: Installation of camera(s) around the site as detailed in Table 10 
and Table 11. 

• Data Storage: Onsite hard disk uploaded to cloud storage hosted by Sightdata. 

• Processing Power: Cloud based Sightdata artificial intelligence algorithms. 

• Network Connectivity: 4G/5G connectivity to enable real-time data transfer to the 
cloud. 

• Power Source: A combination of SLA/Lithium batteries and solar panels. 

 
2 HIVE Research & Development (2024b) 
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Camera Specifications and Recording 
A summary of specifications is detailed in Table 10 and comprehensive details on camera 
specifications and video data collection, is summarised in Appendix C. Key features include 
130 dB WDR for balanced imaging in challenging lighting conditions, efficient H.265+ 
compression technology, IP67 water and dust resistance, and built-in deep learning 
capabilities for human and vehicle detection. The camera supports multiple video streams 
with configurable resolutions and frame rates (up to 30fps at 1280×720), includes advanced 
features like motion and intrusion detection, and offers comprehensive connectivity options, 
including ONVIF compatibility. Although the camera's max resolution is 3840 × 2160 at 30 
fps, for this trial recordings were done at 1280 × 720 at 8 fps to match with Sightdata 
requirements 
The reduction in camera resolution from 3840×2160 (4K) to 1280×720 (720p) represents a 
significant decrease in pixel density by approximately a factor of 3, which directly impacts 
the camera's DORI (Detection, Observation, Recognition, and Identification) capabilities. 
According to the camera's datasheet specifications for the 4mm lens at full 4K resolution, 
the camera can detect objects at 102m, observe at 40m, recognise at 20m, and identify at 
10m. When the resolution is reduced to 720p, these distances are correspondingly reduced 
by roughly the same factor of 3, resulting in new approximate effective ranges: detection at 
34m (down from 102m), observation at 13m (down from 40m), recognition at 7m (down from 
20m), and identification at 3m (down from 10m). This reduction significantly impacts the 
recognition capabilities, particularly in large construction sites where longer detection ranges 
are beneficial. This substantial reduction in spatial resolution suggests that the current 
configuration may be suboptimal for comprehensive site surveillance, especially in 
scenarios requiring detailed observation or identification at greater distances. Websites, 
such as JVSG3, can be used to visualise these changes. When planning camera positions, 
use the Detection, Observation, Recognition and Identification specifications from the 
datasheet to create coverage maps. For example, with the 4mm lens, ensure that areas 
requiring identification (like site entrances) are within 10m of the camera, while general 
detection can work up to 102m away. Having overlapping coverage from multiple cameras 
also provides redundancy in case of camera failure or obstruction. 
 
  

 
3 https://www.jvsg.com/calculators/cctv-lens-calculator/ 
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Table 10. Turret Camera (HIKVISION) 

Feature Details 

Image Quality and 
Resolution 

8 MP resolution; 24/7 Colour Imaging with F1.0 lenses and high-
performance sensors (0.0005 Lux) 

Compression and Storage H.265+ Compression Technology; Supports microSD/SDHC/SDXC/TF 
cards up to 256 GB 

Wide Dynamic Range 
(WDR) 

130 dB WDR for high-contrast lighting conditions 

Audio Capabilities Built-in Microphone for real-time audio security (-U model) 

Smart Features Deep Learning Algorithms for human and vehicle classification; Face 
Capture and Smart Event Detection 

Durability and Environment 
Resistance 

IP67 Rating for water and dust resistance; Operating temperatures from -
30°C to 60°C; Humidity up to 95% 

Network and Protocols Multiple Protocol Support (TCP/IP, HTTP, HTTPS, FTP, DHCP, DNS, RTP, 
RTSP, and more); Supports up to 6 channels for simultaneous live view 

Lens and Field of View Fixed Focal Lenses (2.8 mm and 4 mm options); Adjustable angles (Pan: 0° 
to 360°, Tilt: 0° to 75°, Rotate: 0° to 360°) 

 

Table 11. Camera Locations 

 Delivered On Installed On Adjusted On Chainage 
(Location) 

Heading 

Camera 1 
(Tower A) 

Wednesday 10 
Jan 2024 

Wednesday 17 
Jan 2024 

Monday 22 Jan 
2024 

Chainage: 27700 
(Gate 15) 

WEST 

Camera 2 
(Tower A) 

Wednesday 10 
Jan 2024 

Wednesday 17 
Jan 2024 

Monday 22 Jan 
2024 

Chainage: 27700 
(Gate 15) 

EAST 

Camera 3 
(Tower B) 

Wednesday 10 
Jan 2024 

Wednesday 17 
Jan 2024 

Monday 22 Jan 
2024 

Chainage: 27540 
(Gate 13A) 

WEST 

Camera 4 
(Tower B) 

Wednesday 10 
Jan 2024 

Wednesday 17 
Jan 2024 

Monday 22 Jan 
2024 

Chainage: 27540 
(Gate 13A) 

EAST 

Camera 5 
(Tower C) 

Wednesday 24 
Jan 2024 

Monday 19 
Feb 2024 

Monday 19 
Feb 2024 

Chainage: 27750 
(North Wall) 

WEST 

Camera 6 
(Tower C) 

Wednesday 24 
Jan 2024 

Monday 19 
Feb 2024 

Monday 19 
Feb 2024 

Chainage: 27750 
(North Wall) 

EAST 

Camera 7 
(Tower D) 

Wednesday 24 
Jan 2024 

Monday 19 
Feb 2024 

Monday 19 
Feb 2024 

Chainage: 27630 
(North Wall) 

WEST 

Camera 8 
(Tower D) 

Wednesday 24 
Jan 2024 

Monday 19 
Feb 2024 

Monday 19 
Feb 2024 

Chainage: 27630 
(North Wall) 

EAST 
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Figure 30. Camera Location in Dublin Road Trial provided by LXRP 

4.7 Verification & Validation Approach 
The Verification & Validation (V&V) procedure for this project checks the accuracy and 
reliability of computer vision models developed to track productivity on construction sites. 
This approach ensures the integrity of the data collected for productivity insights and 
validates AI model accuracy. The goal is to improve real-time monitoring of construction site 
activities by systematically verifying and validating models and data outputs. 
Verification Process 
The verification process evaluates the system to ensure it meets the functional requirements 
and specifications for productivity monitoring. Key steps include: 

1. Manual Labelling and Data Extraction via CVAT: 
o The project team uses the Computer Vision Annotation Tool (CVAT) for 

manual labelling, focusing on detecting persons, equipment, trucks + trailers 
leaving the site, and bucket counts. This labelled   data serves as the baseline 
for validating AI accuracy in detecting and counting key activities on-site. 

2. Object Count Comparison: 
o The team compares manually labelled data from CVAT (for persons, 

equipment, trucks + trailers leaving, and bucket counts) against AI-generated 
data to verify alignment. Truck + trailer movements are cross-referenced with 
Load Sheet data from the site team, with counts recorded and analysed in an 
Excel spreadsheet to identify any discrepancies. 

3. Bucket Count Verification: 
o Bucket counts, representing the number of times excavators load spoil into 

trucks, are manually tracked using CVAT for selected days. This process 
involves detailed manual counting of each loading event, which is then 
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documented in Excel to ensure that AI-generated bucket counts accurately 
reflect actual site activities. 

4. Truck + Trailer Exit Validation: 
o The verification process includes tracking trucks + trailers leaving the site by 

comparing CVAT manual labelling with both AI-based counts and Load Sheet 
records. This step, recorded in Excel, ensures accuracy in volume estimations 
based on truck and trailer movements. 

Validation Process 

The validation process tests the AI system in real-world conditions to confirm its functionality 
and reliability for construction productivity analysis. This involves comparing AI-generated 
data with manually collected records from construction sites. 

1. Field Trials and Real-World Validation: 
o Validation is conducted through field trials (e.g., the Dublin Road Trial), where 

the AI system’s outputs are compared to data manually collected on-site. The 
AI’s ability to count trucks, monitor equipment activity, and track spoil removal 
is validated against traditional tracking methods, such as those performed by 
spotters and site engineers. 

2. Comparison of Automated and Manual Data: 
o Discrepancies between AI-generated productivity metrics (e.g., truck + trailer 

movements, material removal rates) and manually collected data are 
analysed. Adjustments are made to the AI model as necessary to align with 
actual field data. 

3. Error Analysis and Mitigation: 
o The validation process also addresses sources of error, such as environmental 

factors (e.g., lighting variations, equipment overlap) that may impact AI 
detection accuracy. By understanding and mitigating these factors, the 
system’s performance becomes more reliable across varying real-world 
conditions. 

Date and Time Periods for Assessment 
The selection of time windows for data analytics and validation is critical to ensure that 
manual labelling efforts align with the most relevant periods of construction activity. This 
allows the project team to focus on high-activity periods where the AI system’s outputs—
such as object detection, equipment utilisation, and spoil removal analytics—can be 
effectively compared to manual data for verification and validation purposes. The following 
criteria were employed: 

1. Footage Availability and Accuracy: 
To perform effective validation, it was essential to work with accurate and available 
footage. Issues with inaccurate time labels in earlier footage uploads were resolved 
by 23 July 2024, and Sightdata provided labelled video files through Amazon Kinesis. 
The footage was cross-checked to ensure it was recorded during periods with high 
levels of activity in the camera’s FOV. Only dates with available and relevant footage 
were selected for validation. 

2. High Activity Periods for Excavation and Haulage: 
The time windows were selected based on haulage records and observed excavation 
activity. Load sheets and operational logs were used to identify the days with 



Building 4.0 CRC Project #28 – The Application of Computer Vision to Measure Productivity and Enhance 
Safety on Construction Sites 

 

OFFICIAL 

OFFICIAL 

significant haulage truck movements and spoil removal activities, ensuring that these 
time periods offered valuable data for manual labelling and comparison with AI 
analytics. Selected dates focused on periods of substantial operational activity, 
maximising the relevance of the verification process and providing key opportunities 
to validate AI outputs. 
For the purpose of bucket counts for earthwork volume calculation, the following 
high-activity dates were chosen, with both manual and AI-generated totals included: 

• 9 Feb: Bucket Counts:  
Manual – 716, AI – 749 

• 16 Feb: Bucket Counts:  
Manual – 762, AI – 744 

• 28 Feb: Bucket Counts:  
Manual – 641, AI – 632 

• 29 Feb: Bucket Counts:  
Manual – 1079, AI – 1118 

• 15 Mar: Bucket Counts:  
Manual – 598, AI – 717 

• 18 Mar: Bucket Counts:  
Manual – 443, AI – 389. 

For truck + trailer counts for earthwork volume calculation, the following dates 
were prioritised, with manual labelling compared against load sheet data: 

• 9 Feb: Bucket Counts:  
Manual – 152, Load Sheet – 146 (Refer to Appendix X) 

• 29 Feb: Bucket Counts:  
Manual – 195, Load Sheet – 204  

• 18 Mar: Bucket Counts:  
Manual – 88, Load Sheet – 89.  

These dates, selected based on observed high levels of excavation and haulage activity, 
provide critical periods for validating the accuracy of AI outputs, comparing them against 
manually collected data, and ensuring reliable estimates of earthwork volumes for the 
project. 
Camera and Zone Selection: 
Camera 4 was selected for this project due to its strategic placement in the high-activity 
area of Zone 4. Positioned to capture the loadout excavator, it plays a crucial role in 
monitoring spoil removal, truck counting, and equipment utilisation. This camera provides 
essential footage for validating AI-based analytics by capturing the key activities that drive 
productivity metrics. 

 

Figure 31. Camera 4 Location in Zone 4 at Dublin Road Trial, provided by LXRP 
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Metrics for Validation within Selected Date and Time Periods 
During the selected time windows, the following metrics will be extracted and compared with 
AI-generated data to check accuracy: 

• Count of People: Manual count of workers detected in the camera’s field of view 
during selected periods, recorded in Excel. 

• Count of Equipment: Verification of AI’s detection of different types of equipment 
(e.g., excavators, trucks) using CVAT data, recorded in Excel. 

• Truck + Trailer Leaving: Comparison of AI-generated counts of trucks + trailers 
leaving the site with manually recorded data from CVAT and Load Sheets. 

• Count of Buckets Unloaded to Trucks: Manual tracking of each time an excavator 
loads spoil into trucks, cross-referenced with AI data, with all counts documented in 
Excel. 

 
Dublin Road Trial Verification and Validation Tool 
For this project, CVAT was used extensively for manual annotation of video footage to verify 
AI-generated data related to object counts, equipment usage, and bucket activities. This 
process involved systematic labelling to ensure precise validation of AI outputs. 
Key Labelling Activities: 

• Object Labelling: Every 300 frames (approximately every 5 minutes), each object 
visible on screen was labelled. Objects were only labelled if at least 50% was visible 
in the frame, following the AI model’s criteria. 

• Excavator Bucket Activity: Bucket activities were labelled, capturing the full scope of 
excavator usage throughout high-activity days. 

• Truck Activity: Truck-leaving events were labelled, including detailed labels for 
scenarios like truck-trailer-leaving and no-tarp, to maintain precise records of all truck 
movements. 

• Date and Timestamp Tagging: Timestamps were added at 5-minute intervals using 
bounding boxes, and adjustments were made incrementally to maintain consistency. 

4.8 Computer Vision Metrics 
A variety of metrics are used in the analysis to see how the AI-based computer vision models 
perform for various tasks/objectives. In this project, the primary objectives are to analyse the 
performance in:  

1. counting buckets (dirt load counts) when excavators load dirt to loadout-trucks 
2. counting people on the scene 
3. detecting objects (equipment and plants of interest). 

No single metric can measure the performance of AI models. Hence, we use a range of 
metrics to capture different aspects of the problem while performing the above tasks. 
Some metrics are suitable for specific tasks, and so are others.   
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Table 12 summarises the key metrics used in assessing the performance of the computer 
vision AI for object and person detection. 
  



Building 4.0 CRC Project #28 – The Application of Computer Vision to Measure Productivity and Enhance 
Safety on Construction Sites 

 

OFFICIAL 

OFFICIAL 

Table 12. Common metrics used to measure the performance of AI models in this project 

Metrics Description Range 
(of values) 

Comments 

Accuracy Measures how close the predicted 
values are to the actual values. It is 
often expressed as a percentage.  

0 to 100 % The higher the values (close 
to 100%), the better the 
model. 

Total Count 
Error 

Measures the sum of differences 
between predicted counts and 
ground truth counts across all 
instances. It measures the overall 
bias of the model in terms of total 
objects counted 

-∞ to +∞ Close to 0 is better. 

Mean 
absolute error 
(MAE)  

Indicates the average difference 
between the absolute values of 
manual and AI-detected counts for 
specific video frames 

0 to +∞ A lower MAE (close to zero) 
is ideal 

Root Mean 
Square Error 
(RMSE) 

Measures the average difference 
between actual and predicted values. 
RMSE is always positive and 
indicates the standard deviation of 
the residuals. 

0 to +∞ An RMSE of close to zero 
indicates that the AI model 
makes fewer errors 

Correlation 
Coefficient 

Measures the strength and direction 
(sign) of a linear 
relationship between actual and 
predicted variables.  

-1 to +1 +ve sign indicates better 
correlation 
-ve sign indicates less 
correlation 
0 – no correlation 

Overcounting 
Rate 

Number of times the predicted 
values exceed the actual values for a 
particular period 

0 to 1 or 
(0% to 100%) 

Indicates a bias in the model.  
Close to 0 is better. 

Undercounting 
Rate  

Number of times the predicted 
values are lower than the actual 
values 

0 to 1 or 
(0% to 100%) 

Indicates a bias in the model.  
Close to 0 is better. 

Cumulative 
Sum 
Difference  

Difference between the sum of 
cumulative counts of actual values 
and predicted values 

-∞ to +∞ +ve means overcounting 
-ve means undercounting 
Close to 0 is better. 

Mean Count 
Difference 

Measures the average counting bias 
for each object category. It helps to 
identify if certain object types are 
consistently over/under counted 

-∞ to +∞ +ve means overcounting 
-ve means undercounting 
0 means balanced predictions 
on average, but errors can 
still exist 

R-squared Measures how well the model 
captures count variations. It also 
shows if the model is better than 
simply guessing the average count. It 
helps to identify if the model is 
learning meaningful patterns. 

-∞ to 1 1 – perfect prediction 
0 – predicting the mean 
-ve - worse than mean 
>0.8 implies excellent 
performance  
0.75 means the model 
explains 75% of the variability 
in the ground truth counts 
0.0 means the model explains 
none of the variability 
-0.5 means the model's 
predictions are 50% worse 
than just using the mean 
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4.9 Earthwork Volume Metrics 
We employ a variety of metrics specifically tailored to measure the accuracy and efficiency 
of earthwork volume estimation. The primary objectives in using these metrics are: 

1. Counting bucket cycles to estimate the volume of material loaded by excavators. 
2. Tracking truck + trailer movements to quantify the material transported off-site. 
3. Calculating loose and bank cubic metres (LCM and BCM) to represent material 

volumes in loose and in-situ states, respectively. 
Given the complexities of excavation, no single metric suffices for accurate volume 
measurement. Instead, a set of metrics is used to validate and compare AI-generated and 
manually recorded data. Below is an overview of each earthwork volume calculation metric. 

Table 13. Earthwork-Specific Volume Metrics 

Metrics Description Units Comments 

Bucket Counts Total number of bucket cycles 
recorded for a given period, manually 
labelled or AI-generated 

Count Used to calculate LCM by 
multiplying with Heaped 
Bucket Capacity 

Heaped 
Bucket 
Capacity 

The calculated capacity of each 
bucket load based on bucket size 
and fill factor. 

Specific to 
bucket size and 
fill factor 

Accurate for estimating 
bucket load volume under 
actual site conditions, such as 
tough clay 

Truck + Trailer 
Leaving 
Counts 

Total count of trucks + trailers 
leaving the site during a selected 
period, based on data from Manual 
labelling on CVAT, Load Sheets, and 
AI detection 

Count Cross-referenced with manual 
Load Sheets, AI-generated 
data, and CVAT labelling for 
validation and accuracy in 
volume calculations 

Loose Cubic 
Metres (LCM) 

The volume of material moved in a 
loose state, calculated from bucket 
counts 

Cubic meters LCM = Total Bucket Counts × 
Heaped Bucket Capacity 

Bank Cubic 
Metres (BCM) 

Adjusted volume accounting for 
material expansion, representing in-
situ volume 

Cubic meters BCM = LCM / Bulk Factor, 
typically using a bulk factor of 
1.6 

4.10 Earthwork Volume Analysis  
Accurate measurement and monitoring of earthwork volumes are critical components of the 
level crossing removal productivity analysis. This section focuses on the application of 
computer vision and AI technologies to enhance the tracking and calculation of earthwork 
volumes for the Dublin Road Level Crossing Removal trial. The earthwork volume analysis 
used two primary methods: bucket counting and truck/trailer movement tracking. Both 
approaches apply computer vision algorithms to detect and quantify key activities related to 
earth removal and transportation. In the bucket counting method, AI models are trained to 
identify and count the number of times excavators load soil into trucks or trailers. By 
combining these counts with known bucket capacities and material expansion factors, the 
LCM of material excavated and subsequently calculate the BCM can be determined. 
Additional to this approach is the simpler but less granular truck/trailer movement tracking 
method, which utilises computer vision to monitor the exit of trucks and trailers from the 
construction site. By correlating these vehicle movements with their respective load 
capacities, an estimate for the total volume of material transported off-site can be performed. 
The earthwork volume analysis section presents a detailed evaluation of these two methods, 
including the underlying assumptions, calculation methodologies, and a comprehensive 
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comparison of the AI-generated results against manually collected data from site teams and 
load sheets. 
As discussed two primary measurements are used: LCM and BCM (Davidson, 2017). 

• LCM refers to the volume of material in its loosened state, typically measured after 
it’s excavated. LCM accounts for the material expansion that occurs when it’s 
disturbed, making it ideal for estimating transportation requirements. 

• BCM represents the in-situ or original volume of the material in its compacted state, 
before excavation. BCM is essential for calculating the actual volume removed, as it 
adjusts LCM by a bulk factor (e.g., 1.6), accounting for expansion. 

 
Field measurements  
These measurements were derived from the site-team 

1. Load Sheet Data (Truck + Trailer): 
• Description: Load sheets, manually recorded by on-site spotters, track essential 

details such as the time in and time out of trucks and trailers, along with the type 
of material loaded and the specific zone of removal. This documentation provides 
a precise log of daily earthwork operations and helps track each vehicle's entry 
and exit times, serving as a foundation for calculating total earthwork movement. 

• Verification and Cross-Referencing: Load sheet data can be cross-referenced 
with video footage to check accuracy and validate the manually recorded 
information. Differences between manual entries and footage timestamps can 
indicate potential discrepancies that need further investigation. 
 

Table 14. Total Truck + Trailer Recorded by Spotters (Camera 4 Location)  

Date Total Loads 

8 Feb 2024 65 

9 Feb 2024 146 

16 Feb 2024 145 

28 Feb 2024 131 

29 Feb 2024 204 

15 Mar 2024 169 

18 Mar 2024 89 

 
Table 14 provides a record of the number of truck and trailer departures from a specific 
location where Camera 4 is positioned. This data was manually recorded by on-site spotters 
and captures daily earthwork activities by noting each time a truck or trailer leaves the site. 

2. Earthworks Cut Data (Earthworks Removal): 
• Description: Earthworks cut data captures the volume of material excavated from 

various zones, categorised by truck and trailer entries and exits. This dataset 
records which materials were removed from specific zones, using the entry and 
exit times as a way to correlate earthwork activities accurately. 
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• In Practice on Site Volume Records: By using truck and trailer timestamps for 
time in and time out, along with material and zone information, the site team 
calculates earthwork removal volumes on-site. 

• Use for Validation: This data supports cross-referencing with other field 
measurements to ensure consistency in the recorded earthwork volumes. By 
aligning this data with manually collected information and automated methods, 
teams can verify the accuracy of the reported excavation progress. 
 

Table 15. Earthworks Removal Volume (BCM) By Zone Recorded by site team (LXRP 2024) 

Date Earthworks Cut Data By Zone (BCM) Total 
Zone 3 Zone 4 

9 Feb 2024   1139.6 1139.6 
16 Feb 2024 803 803 1606 
28 Feb 2024 1441   1441 
29 Feb 2024 663.3 1547.7 2211 

15 March 2024 929.5 929.5 1859 
18 March 2024 489.5 489.5 979 

 
Table 15 provides the daily volume of material excavated from Zone 3 and Zone 4, 
measured in BCM. Although Camera 4 monitors only Zone 4, data from both zones is 
recorded because material from Zone 3 is pushed into Zone 4 for final removal. 
 
Bucket Counts 
Key Assumptions 

1. Fill Factor: A fill factor of 0.85 was used for the excavator bucket capacity, which 
corresponds to operations in tough clay conditions. This accounts for the partial filling 
of the bucket due to the material's tendency to not fully load the bucket (Appendix E). 

2. Bulk Factor: A bulk factor of 1.6 was applied based on the material characteristics, 
which results in a volume increase of 60% when the material is excavated and 
becomes loose. 

3. Heaped Bucket Capacity: The heaped bucket capacity was calculated using the 
nominal bucket size multiplied by the fill factor, providing an accurate estimate of the 
actual bucket load. 

4. Zone Analysis Focus: The analysis focused primarily on Zone 4 because earthworks 
removal from Zone 4 included material from both Zone 3 and Zone 4. This approach 
was taken to ensure that the entire scope of removed material was captured in a 
consolidated analysis. 

Methods 
The methods for assessing the performance of the computer vision as well as the accuracy 
of site-based observations are as follows: 
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1. Data Collection comprised three sources: 
A. Manual Ground Truth Labelling (CVAT): The LXRP team and University of 

Melbourne team manually labelled bucket counts using the Computer Vision 
Annotation Tool (CVAT). This involved visually identifying and counting the 
cycles of the excavator buckets from video footage, providing a human-verified 
count. 

B. AI-Based Monitoring (Sightdata): Bucket counts were also captured using AI-
based monitoring from Sightdata, which automatically analysed video footage 
to identify and count the excavator bucket cycles.  

C. Earthworks Cut Data: The recorded BCM data from the site team was 
extracted for Zones 3 and 4 to compare with the results calculated from bucket 
counts obtained through Manual Labelling and AI-based monitoring 

2. Calculation of Heaped Bucket Capacity: The heaped capacity for each excavator 
was calculated using the formula: 

• Heaped Capacity = Bucket Size × Fill Factor 
For example, for the Komatsu PC490LC with a bucket size of 2.7 m³ and a fill factor 
of 0.85: 

• Heaped Capacity = 2.7 × 0.85 = 2.295 m³ 
3. Calculation of Loose and Bank Cubic Meters (LCM and BCM): 

• The total Loose Cubic Meters (LCM) for Zone 4 was determined using the 
formula: 

o LCM = Total Bucket Counts × Heaped Bucket Capacity 

• The Bank Cubic Meters (BCM) was then derived using the bulk factor: 
o BCM = LCM / Bulk Factor 

4. Comparison and Validation: 
The BCM values obtained from bucket counts labelled manually via CVAT and using 
the AI-based monitoring (Sightdata) were compared against the recorded Earthworks 
Cut Data for Zones 3 and 4.  

Results 
Table 16. Comparison table between Manual labelling vs AI vs Earthworks Cut Data 

Comparison between Manual Ground Truth Labelling, AI vs Earthworks Cut Data 

Date Manual Ground Truth  
(BCM) 

AI  
(BCM) Earthworks Cut Data (BCM) 

9 Feb 2024 1027 1074 1140 
16 Feb 2024 1092 1067 1606 
28 Feb 2024 919 906 1441 
29 Feb 2024 1547 1603 2211 
15 Mar 2024 857 1028 1859 
18 Mar 2024 484 425 979 
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Figure 32. Comparison graph between Manual Ground Truth labelling, AI vs Earthworks Cut Data 

As shown in Figure 32, the AI counted volumes aligned very well with the manual ground 
truths, however it was clear that the site-based investigations consistently overestimated the 
volume of material being removed from site. There are several possible reasons for this, 
however form observing the loadout excavator for several days it was evident that many 
trucks were underloaded. For example, often each truck and trailer were only loaded with 
four buckets which approximates to 9.2 LCM whereas most often they were loaded with five 
buckets equal to 11.5 LCM or rarely six buckets equalling 13.8 LCM. Based on site team 
reporting it appears that truck trailer combinations were all assumed to have 12.5 LCM which 
exceeded the average actual volume in each truck trailer combination. This is an important 
finding as it highlights the prevalence of underloading and the subsequent inefficiency and 
inaccuracy of existing methods. 
Further to this a detailed analysis of counting the number of bucket-loads of dirt identified 
by an AI algorithm is compared to manual labelling as shown in Table 17.  

Table 17. Summary of bucket count analysis 

Date Actual Predictions 
(AI) 

Accuracy 
(%) 

Overcounting 
Rate (%) 

Undercounting 
Rate (%) 

MAE 
(%) 

9 Feb 2024 716 749 96.98 3.02 0.00 3.02 

28 Feb 2024 641 632 99.18 0.00 0.82 0.82 

29 Feb 2024 1079 1118 96.51 3.49 0.00 3.49 

15 Mar 2024 598 717 89.11 10.89 0.00 10.89 

18 Mar 2024 443 389 95.06 0.00 4.94 4.94 

 
For the five days (9 Feb, 28 Feb, 29 Feb, 15 Mar, and 18 Mar of 2024), the accuracy of the 
predictions by the AI algorithm ranges from 89% (15 Mar) to 99.18% (29 Feb). The maximum 
overcounting rate (10.89%) is observed on 15 Mar, and undercounting rate (4.94%) on 
18 Mar. The maximum MAE is 10.89 (bucket counts), followed on 15 Mar. 
The hourly bucket counts for actual, and AI counted for 18 Mar 2024 are summarised in 
Figure 33. It is clearly evident that while generally accurate, early morning counts were not 
captured due to sun glare on the camera lens (discussed later in the report). 
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Figure 33. Comparison of hourly bucket counts on 18 Mar 2024 

 

 
Figure 34. Comparison of hourly bucket counts, highlighting the difference between counts on 18 Mar 2024 

The results for the remaining four days (Feb 09, Feb 28, Feb 29 and Mar 15) are presented 
in Appendix E. 
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Discussion 
1.  Manual Ground Truth vs AI 

Table 18. Comparison Table between Manual Ground Truth vs AI 

Date Manual Ground Truth  
(BCM) 

AI  
(BCM) Difference (%) 

9 Feb 2024 1027.01 1074.35 4.6 

16 Feb 2024 1092.99 1067.18 -2.4 

28 Feb 2024 919.43 906.53 -1.4 

29 Feb 2024 1547.69 1603.63 3.6 

15 Mar 2024 857.76 1028.45 19.9 

18 Mar 2024 484.81 425.71 -12.2 

• On most dates, the Manual Ground Truth and AI-based counts align closely, with 
differences of less than 10%, indicating good consistency (e.g., 9 Feb, 16 Feb, 28 Feb, 
and 29 Feb). 

• 15 Mar shows a significant positive difference, where AI (1028.45 BCM) estimates were 
nearly 20% higher than manual counts (857.76 BCM). Conversely, 18 Mar shows a 
negative difference of -12.2%, where manual counts were higher than AI estimates. 

 
2.  Manual Ground Truth and AI vs Earthworks Cut Data 

Table 19. Comparison Table of Manual Ground Truth vs AI-Based Results Against Earthworks Cut Data 

Date Manual Ground Truth  
(BCM) 

AI  
(BCM) 

Earthworks Cut Data 
(BCM) 

Manual vs 
Earthworks 

(%) 

AI vs 
Earthworks 

(%) 

9 Feb 2024 1027.01 1074.35 1139.6 -9.9 -5.7 

16 Feb 2024 1092.99 1067.18 1606 -31.9 -33.6 

28 Feb 2024 919.43 906.53 1441 -36.2 -37.1 

29 Feb 2024 1547.69 1603.63 2211 -30.0 -27.5 

15 Mar 2024 857.76 1028.45 1859 -53.9 -44.7 

18 Mar 2024 484.81 425.71 979 -50.5 -56.5 

• On 9 Feb, both manual (1027.01 BCM) and AI (1074.35 BCM) estimates were close to 
the Earthworks Cut Data (1139.6 BCM), demonstrating reliable performance for both 
methods. 

• On 16 Feb, 28 Feb, and 29 Feb, significant discrepancies were observed, with manual 
and AI results showing more than 30% underestimations compared to the Earthworks 
Cut Data. 

• 15 Mar and 18 Mar revealed the most substantial discrepancies, where both manual 
and AI estimates were significantly lower (over 40% lower) than the Earthworks Cut 
Data. 

 

Findings 
The considerable differences between Manual Ground Truth, AI-based counts, and the 
Earthworks Cut Data suggest potential underestimations in bucket count calculations. 
However, during the analysis, it was observed that some earthworks removal volumes 
recorded in both Zone 3 and Zone 4 were duplicated.  

 
When comparing Manual Ground Truth and AI-based BCM values using only Zone 4 Earthworks 
Cut Data, the results show strong alignment, especially on key dates such as 9 Feb, 29 Feb, and 
15 Mar. 
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Table 20. Comparison Table: Manual Ground Truth vs AI-Based Results and Zone 4 Earthworks Cut Data 

Date Manual Ground Truth   
(BCM) 

AI 
(BCM) Earthworks Cut Data (BCM) 

9 Feb 2024 1027 1074 1139.6 

16 Feb 2024 1092 1067 803 

29 Feb 2024 1547 1603 1548 

15 Mar 2024 857 1028 930 

18 Mar 2024 484 425 489 

 
 
 

 
Figure 35. Comparison Graph: Manual Ground Truth vs AI-Based Results with Zone 4 Earthworks Cut Data 

 
Truck and Trailer Count 
A less granular approach to determining earthworks volume is by counting the trucks and 
trailers leaving using computer vision. This was trialled for several days with generally 
consistent results found between both computer vision and site-based recordings as 
detailed in Table 21 below. Here it can be seen that all methods of counting were within 5% 
of each other. Almost all trucks were truck trailer combinations, with a few single trucks, 
represented here as 0.5. Sightdata models were trained to disregards non-earthworks trucks 
as ‘other trucks’ and as such didn’t count flatbed and other trucks unrelated to moving earth. 

Table 21. Truck and Trailer Counts  

 
Figure 36 detailed results from the Sightdata computer vision for number of vehicles leaving 
the site in five-minute intervals. Here it can be seen that the vast majority of vehicles were 
truck and trailer combinations with one truck and eight other non-earthwork related vehicles. 
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Figure 36. Five-minute results for truck and trailers leaving the site on 9 Feb 

While truck counting using AI can be an effective method for estimating earthwork volumes 
its lack of granularity and reliance on an assumed volume for each truck means that it is not 
a particularly accurate measure for earthwork volumes. As was evident in the previous 
section assumptions relating to ‘how full’ each truck was differed by up to 25% from the 
actual volume placed in trucks by the loadout excavator. As such this report recommends 
the use of AI to track actual excavator loadout volumes rather than trucks leaving the site 
for the most accurate estimations of earthwork volumes. 

4.11 People Count Analysis 
The study evaluates the performance of AI-based people detection algorithms (developed 
by Sightdata) against manually annotated video frames using CVAT. The analysis spans 
eight days across February and March 2024 (8 Feb 8, 9 Feb, 15 Feb, 16 Feb, 28 Feb, 
29 Feb, 15 Mar, and 18 Mar), comparing the accuracy of automated counting versus human-
annotated ground truth data. The comparison utilises several key metrics, including Mean 
Absolute Error (MAE), Root Mean Square Error (RMSE), correlation coefficients, and both 
overcounting and undercounting rates, to comprehensively assess the AI system's people 
detection capabilities under various construction site conditions. 
Table 22 summarises the eight-day comparison results.  

Table 22. Summary of performance comparison of AI predictions of people counts against actual counts 

Date Mean 
Absolute 
Error 

Root Mean 
Square Error 

Correlation Overcounting 
Rate (%) 

Undercounting 
Rate (%) 

Cumulative 
Difference 

8 Feb 2024 0.20 0.80 0.44 2.12 10.86 -109 
9 Feb 2024 0.12 0.55 0.51 3.38 4.36 -14 
15 Feb 2024 0.35 0.97 0.22 7.06 12.29 -85 
16 Feb 2024 0.16 0.77 0.65 1.13 8.17 -95 
28 Feb 2024 0.21 0.66 0.01 4.70 8.55 -58 
29 Feb 2024 0.12 0.40 0.82 0.28 10.28 -84 
15 Mar 2024 0.11 0.45 0.80 2.12 6.06 -45 
18 Mar 2024 0.18 0.62 0.31 1.97 8.59 -73 
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Table 22 shows that the MAE is between 0.11 and 0.21, indicating that the AI model is 
reasonably accurate at predicting people's counts with a propensity to undercount (i.e. not 
detect people) on approximately 10% of frames assessed. The overcounting and 
undercounting rates (greater than zero) indicate that the model makes errors at certain times 
(false positives or false negatives), which results in cumulative differences between actual 
(ground truth) values and predicted values. Figure 37 shows the actual people count and 
AI-predicted counts for 18 Mar 2024. 
 

 
Figure 37. Number of people annotated vs number of people predicted by AI for 18 Mar 2024 

 

 
Figure 38. Prediction error statistics for 18 Mar 2024 

Figure 38 shows the prediction error statistics regarding the number of people. In this 
instance, the overall mean error is -0.49, which is good. The negative sign indicates that the 
model undercounts and the overall standard deviation is 0.79 people. The figure also 
provides a detailed analysis of where it makes errors regarding the number of people. When 
no people are in the scene (i.e., the actual counts of people equal zero), the error is close 
to zero. Likewise, the error is less than -0.75 people when actual counts equal 1. When the 
actual number of people equals two, it makes an error of <-1.5 people; when there are three 
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people, the model makes an error of -1.75; in the case of four people, it counts two fewer 
people than the actual counts. 
Similar comparison graphs for other days (8 Feb, 9 Feb, 15 Feb, 16 Feb, 28 Feb, 29 Feb, 
15 Mar) are listed in Appendix F.  

4.12 Object Detection Analysis 
This section compares the results of manually annotated objects (equipment and plant) 
against the AI-predicted results. There are eight object categories: bobcat, forklift, car, 
excavator, loadout-truck, person, telehandler and truck. However, due to inconsistencies in 
labelling bobcats and forklifts manually and difficulty in recognising them on cameras 
because of their small sizes, they have been merged as a single object (i.e., bobcat-forklift) 
in the following analysis. Although people counting analysis was presented in the previous 
section as a separate analysis, here, the ‘person’ object is included as part of object 
detection analysis for completeness. Sightdata runs a separate AI algorithm for detecting 
people; hence, a separate analysis was provided. 
In this section, we provide the results for 18 Mar 2024. However, the results for the remaining 
seven days are provided in Appendix F. This section is divided into two subsections for 
clarity: 

• Analysis for each day 

• Analysis across days. 
Analysis for each day 
The analysis for each day mainly focuses on comparing the performance of AI model(s) 
against the ground truth for that day. Table 23 shows the AI model’s performance for 18 Mar 
2024, for seven object categories.  

Table 23. Comparison results of AI predictions against manual annotations for 18 Mar 2024 

Object Ground 
Truth 

Predicted Total 
Count 
Error 

Mean 
Count 
Difference 

RMSE Correlation R 
squared 

Overcounting 
Rate (%) 

Undercounting 
Rate (%) 

Bobcat-
forklift 

25 18 -7.00 -0.05 0.22 0.83 0.66 0.00 4.70 

Car 2 39 37.00 0.25 0.50 0.32 -17.75 24.83 0.00 

Excavator 82 126 44.00 0.30 0.66 0.10 -0.74 36.24 6.71 

Loadout-
truck 

0 31 31.00 0.21 0.48 0.00 0.00 19.46 0.00 

Person 124 48 -73.00 -0.49 0.93 0.71 0.32 2.68 37.58 

Telehandler 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Truck 65 18 -47.00 -0.32 0.57 0.48 -0.15 0.00 30.87 

 
The model showed varying levels of accuracy across the seven object categories, with some 
notable over- and under-counting issues. Excavators had the highest overcounting rate 
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(36.24%), with 126 predicted instances compared to 82 ground truth instances. Cars were 
also significantly overcounted (24.83%). For person detection, there was a substantial 
undercounting issue (37.58%), with only 48 predictions compared to 124 ground truth 
instances. The strongest correlation with ground truth was observed for bobcat-forklifts 
(0.83) and persons (0.71), suggesting more reliable detection patterns for these categories. 
Notably, telehandlers had zero detections and zero ground truth instances, indicating they 
were not present in the dataset for this day. 
Figure 39 shows the cumulative counts of objects detected from 06:00 to 18:00 on March 
18, 2024. It compares ground truth (GT, solid lines) against model predictions (Pred, dashed 
lines) for seven object categories. The graph effectively visualises both the temporal 
patterns of activity and the accuracy of the model's predictions compared to ground truth 
across different object types throughout the workday. 

 
Figure 39. Cumulative counts of different objects detected throughout 18 Mar 2024, from 6:00 am to 6:00 pm 

Throughout 18 Mar 2024, the cumulative detection data reveals distinct patterns in 
construction site activity and model performance. The site was most active with persons and 
excavators, accumulating around 120 counts by day's end, with peak activity occurring 
between 10:00 am and 2:00 pm. While the AI model generally tracked the actual activity 
patterns, there were notable discrepancies in its predictions. The site maintained moderate 
activity levels for trucks and bobcat-forklifts (around 60–65 total counts), while cars and 
loadout trucks showed lower presence throughout the day. Telehandlers were notably 
absent or had minimal activity. What's particularly interesting is the concentrated surge in 
activity during mid-day hours, suggesting this was the peak operational period for the 
construction site. Despite some counting discrepancies, the model's ability to follow these 
trends indicates it can effectively capture site activity's general rhythm and patterns, even if 
absolute count accuracy varies by object type. 
Figure 40 shows the AI model’s performance for 18 Mar 2024, in terms of hourly comparison. 
The four graphs collectively reveal essential patterns about the AI model's performance in 
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monitoring construction site activity on 18 Mar 2024. The model demonstrates variable 
accuracy that appears to be strongly correlated with site activity levels – performing better 
during quieter periods and struggling during peak hours (10:00 am – 2:00 pm). A consistent 
trend across all visualisations is the challenge with person detection, showing systematic 
undercounting, while vehicles (particularly cars and excavators) tend to be overcounted. The 
hourly error patterns suggest that the model's accuracy deteriorates when the site becomes 
busier, possibly due to increased object overlap, occlusion, or complex interactions between 
different object types. The accuracy graph's volatility (between 0% and 100%) indicates that 
the model's reliability varies significantly throughout the day and across object categories. 
When examining total object counts, while the model captures general activity patterns, it 
tends to overestimate during busy periods, suggesting that high-density scenarios present 
the most significant challenge for accurate detection. These insights point to potential areas 
for model improvement, particularly in handling high-activity periods and maintaining 
consistent performance across all object categories. 

 
Figure 40. Hourly comparison of AI model's performance for 18 Mar 2024 

Hourly Total Counts: The model's performance varied throughout the day, with notable 
discrepancies in counting different object types. Person detection showed the highest 
variability, with a significant peak around 2:00 pm. The model tended to undercount persons 
during peak hours but performed more consistently with excavators and trucks. There were 
periods where the model's predictions diverged significantly from ground truth, particularly 
during high-activity periods. 
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Hourly Error (Predicted – Ground Truth): The error analysis reveals systematic biases in 
the model's predictions. Cars and excavators showed positive errors (overcounting), 
reaching up to 12–13 instances per hour, while person detection often had negative errors 
(undercounting). The magnitude of errors increased during busier periods, suggesting the 
model struggles more with accuracy during high-activity times. The most significant errors 
occurred during mid-day hours, particularly between 12:00–3:00 pm. 
Hourly Accuracy: The accuracy plot shows considerable volatility across different object 
categories. While some objects, like bobcat-forklifts and trucks, achieved 100% accuracy 
during certain hours, accuracy dropped significantly during others, sometimes falling to 0%. 
Person detection maintained moderate accuracy levels but showed consistent fluctuations. 
The model's performance was least stable during peak activity hours, with accuracy varying 
dramatically across all categories. 
Hourly Total Object Counts (All Types): Looking at total counts across all object types, 
the model generally tracked the overall pattern of site activity but with notable discrepancies. 
The most significant gaps between predicted and ground truth totals occurred during peak 
activity hours (around 10:00 am – 2:00 pm). While the model captured the general trends of 
increasing and decreasing activity, it tended to overestimate total counts during busy 
periods, suggesting challenges in accurately distinguishing between objects during high-
activity scenarios. 
Analysis across days 
In this section, we do additional analysis with advanced metrics to measure the AI model's 
performance. The study is conducted for all eight days of data collection for seven objects. 
Table 24 describes these metrics.  

Table 24. Advanced metrics used to measure the performance of AI models in this project 

Metrics Description Range of values Comments 

Exact Accuracy Measures how often the system 
predicts exactly the correct 
number of objects 

0 to 1 (0% to 100%) It should be as high as possible 
(close to 1).  

Within-one 
Accuracy 

Measures how often the system's 
prediction is within ±1 of the 
actual count 

0 to 1 (0% to 100%) It should be higher than exact 
accuracy.  

Small Count MAE Average absolute error when 
counting 0-2 objects 

0 to ∞ (typically 0–2) It should be close to 0. Values 
above 0.5 indicate poor 
performance in detecting small 
numbers of objects 

Medium Count 
MAE 

Average absolute error when 
counting 3-5 objects 

0 to ∞ (typically 0–3) It should be close to 0. Values 
above 1.0 suggest issues with 
moderate object density 

Large Count MAE Average absolute error when 
counting >5 objects 

0 to ∞ (typically 0–5) It should be proportional to 
the count. Higher values more 
acceptable than for small/medium 
counts 

False Positive 
Rate 

The proportion of cases where 
the system detects objects when 
none are present 

0 to 1 (0% to 100%) Ideally should be close to 0.  

False Negative 
Rate 

The proportion of cases where 
the system misses objects that 
are present 

0 to 1 (0% to 100%) Should be close to 0.  

Overcounting 
Frequency 

The proportion of times 
the system predicts more objects 
than actually present 

0 to 1 (0% to 100%) Ideally, it should be close to 0.  
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Undercounting 
Frequency 

The proportion of times 
the system predicts fewer objects 
than actually present 

0 to 1 (0% to 100%) Ideally, it should be close to 0.  

 
Exact Accuracy 
Figure 41 (heatmap) visualises the exact count accuracy of the AI model across different 
dates and object categories from February to March 2024, revealing exciting patterns in 
detection performance. Telehandlers show perfect accuracy (1.00) across all dates, possibly 
due to their consistent absence rather than successful detection. Cars demonstrate strong 
performance with consistently high accuracy (mostly above 0.90), while bobcat-forklifts 
show significant improvement over time, reaching excellent accuracy (0.88–0.99) in later 
dates despite early struggles (0.13-0.44). Excavators display a noticeable improvement 
trend, starting with lower accuracy (around 0.30) but improving to moderate levels (0.57–
0.87) in later periods. Person detection remains challenging, with moderate accuracy (0.35–
0.81) and inconsistent performance across dates. Loadout trucks and regular trucks show 
variable performance, with accuracy fluctuating considerably (trucks ranging from 0.18 to 
0.95, loadout trucks from 0.42 to 0.92). Overall, the model's performance generally 
improved towards the later dates (late February and March), suggesting possible 
refinements in the detection system over time or better adaptation to site conditions. 
AI model was re-trained after 16 Feb 2024, which Sightdata confirmed.  

 
Figure 41. Exact accuracy comparison for 8 days 
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Figure 42. Within-one-accuracy metric comparison for 8 days 

Figure 42 shows the ‘within one accuracy’ metric across different dates and object 
categories, indicating when the model's count was within ±1 of the ground truth, revealing 
generally higher accuracy than exact counts. Almost all object categories demonstrate 
excellent performance, with accuracy frequently above 0.90. Telehandlers, cars, and 
bobcat-forklifts consistently achieve near-perfect accuracy (0.97–1.00) across all dates. 
Excavators show notable improvement over time, starting at moderate levels (0.61–0.78) in 
early February but reaching perfect or near-perfect accuracy (0.99–1.00) in later dates. 
Person detection, while still the most challenging category, performs significantly better 
under this metric (mostly above 0.85) compared to exact count accuracy, though with some 
fluctuations (lowest at 0.67). Loadout trucks maintain very high accuracy (0.96–1.00) 
throughout the period, and regular trucks show good performance despite some dips 
(notably 0.60 on 9 Feb and 0.66 on 28 Feb). Overall, this metric suggests that while the 
model may not always predict the exact count, it consistently gets very close to the 
actual count for most object categories, indicating reliable performance for practical 
applications. 
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Figure 43. Small count MAE metric to compare AI model's performance across 8 days 

Figure 43 shows the Small Count MAE across dates and object categories, where lower 
values (lighter colours) indicate better performance when objects were less than two. The 
model shows error levels across object types and dates, with some notable patterns. 
Telehandlers consistently show zero error (0.00) across all dates, though this likely reflects 
their absence rather than perfect detection. Cars generally maintain low error rates (0.01–
0.25), indicating reliable detection accuracy. Excavators show more substantial errors, 
particularly on 9 Feb (1.31) and 16 Feb (0.90), suggesting challenges in accurate counting 
during these periods. Trucks also display higher error rates on specific dates (peaking at 
1.14 on 28 Feb), indicating periodic difficulties in accurate detection. Person detection shows 
improvement over time, with early high errors (0.94 on 8 Feb) decreasing to more moderate 
levels (around 0.40) in later dates. The bobcat-forklifts show variable performance, with 
higher errors in earlier dates (0.60–0.88) but improving significantly in later periods (0.01–
0.12). Overall, the model's error rates generally decreased towards later dates for most 
categories, suggesting improved performance over time, though some object types continue 
to present challenges for accurate counting. 
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Figure 44. Medium count MAE metric to compare the AI model's performance across 8 days 

Figure 44 shows the Medium Count MAE across dates and objects, revealing patterns in 
the model's performance with medium-sized counts (2–5 objects for each category). Person 
detection shows consistent presence across all dates but with varying error levels, starting 
high at 2.09 (8 Feb) and showing some improvement in later dates (dropping to 1.30–1.81), 
though errors remain substantial. Trucks show exceptionally high error rates (3.00) on 
specific dates (9 Feb and 28 Feb), indicating significant counting challenges during these 
periods. Excavators demonstrate relatively stable and lower error rates (1.03–1.18) across 
their observed dates, suggesting more consistent performance for this category. Bobcat-
forklifts appear only once with a moderate error rate (2.00). At the same time, many 
categories show blank periods, indicating either the absence of medium counts or 
insufficient data for these object types during those times. The lack of data for telehandlers 
and loadout-trucks suggests these objects rarely appeared in medium-count scenarios. 
Overall, the model seems to struggle more with medium counts than small counts, with 
person detection being the most consistently challenging category requiring improvement. 
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Figure 45. Large count MAE metric to compare the AI model's performance across 8 days 

Figure 45 shows the Large Count MAE across dates and object categories when the 
number of object counts was in the range of 0–5 objects for each category. It reveals that 
only person detection had instances of large counts across the observed period, with 
significant error variations. The model shows considerable challenges in accurately counting 
large groups of people, with the highest MAE of 4.00 occurring in early February (8 Feb) 
and March (18 Mar). There was some improvement during mid-February (15 Feb and 
16 Feb), where the error decreased to 2.50, and notably, one period (29 Feb) showed 
perfect accuracy with an MAE of 0.00. The complete absence of data for other object 
categories (bobcat-forklift, car, excavator, loadout-truck, telehandler, and truck) suggests 
that these objects rarely or never appeared in large numbers during the observation period. 
This pattern indicates that managing large crowds of people remains the primary 
challenge for the model when dealing with high-count scenarios. At the same time, 
other object types typically appear in smaller quantities that are handled by the small and 
medium count metrics. 
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Figure 46. False Positive Rate metric to compare the performance of the AI model 

Figure 46 shows the false positive rate (FPR) across different dates and object categories, 
showing how often the model incorrectly identifies objects that aren't present. Cars and 
excavators show concerning patterns of false positives, with cars reaching a high FPR of 
0.44 on 16 Feb and maintaining notable rates on 18 Mar (0.24). In contrast, excavators show 
increasing false positives towards later dates (peaking at 0.36 on 18 Mar). Loadout-trucks 
demonstrate variable but significant false positive rates, with peaks of 0.39 (9 Feb) and 0.36 
(28 Feb). In contrast, person detection maintains consistently low false positive rates (mostly 
below 0.07) across all dates, suggesting reliable performance in avoiding false person 
detections. Telehandlers show perfect performance with zero false positives throughout, 
though this might be due to their rare occurrence. Trucks and bobcat forklifts generally 
maintain low false positive rates (mostly below 0.05), indicating good precision in their 
detection. The model shows category-dependent reliability, with vehicles (particularly cars, 
excavators, and loadout-trucks) being more prone to false positive detections than other 
categories. 
Figure 47 shows the false negative rate (FNR) across dates and object categories, revealing 
how often the model fails to detect objects that are present. Bobcat-forklifts show 
significantly high false negative rates in early dates (0.82–0.84) but demonstrate dramatic 
improvement in later periods (dropping to 0.00–0.10). Trucks also display concerning 
patterns with very high FNRs on specific dates (0.73 on 9 Feb and 0.81 on 28 Feb), showing 
better performance in other periods. Person detection shows moderate but persistent false 
negative rates throughout the period (ranging from 0.17 to 0.57), indicating a consistent 
challenge in detecting all present persons. In contrast, cars and excavators maintain 
impressively low false negative rates (mostly below 0.07), suggesting reliable detection 
when these objects are present. Telehandlers show perfect performance (0.00 throughout), 
though this likely indicates their absence rather than ideal detection. Loadout-trucks 
generally maintain low FNRs except for one spike (0.15 on 9 Feb). Overall, the model 
significantly improves over time for some categories (notably bobcat forklifts), while person 
detection and trucks remain challenging with persistently missed detections. 
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Figure 47. False Negative Rate metric to compare the performance of the AI model 

 

 
Figure 48. Overcounting Frequency metric to compare the performance of the AI model 

Figure 48 shows the overcounting frequency across dates and object categories, 
highlighting when the model predicts more objects than actually present. Excavators show 
the most significant overcounting issues, with particularly high frequencies on 16 Feb (0.69) 
and 9 Feb (0.63) and continuing moderate overcounting in March (0.36). Cars also 
demonstrate notable overcounting problems, especially on 16 Feb (0.44) and 18 Mar (0.25). 
Loadout-trucks show consistent moderate overcounting across most dates, with peaks at 
9 Feb (0.39) and 28 Feb (0.36). In contrast, person detection maintains very low 
overcounting frequencies (mostly below 0.11) across all dates, suggesting good precision 
in counting people. Telehandlers show zero overcounting throughout all dates, while trucks 
and bobcat forklifts maintain consistently low overcounting frequencies (mostly below 0.05). 
This pattern suggests that the model is particularly prone to overcounting certain vehicle 
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types (especially excavators, cars, and loadout-trucks) while maintaining better counting 
accuracy for people and smaller vehicles. The temporal variation in overcounting rates might 
indicate changing site conditions or model performance variations across dates. 
 

 
Figure 49. Undercounting Frequency metric to compare the performance of the AI model 

Figure 49 shows the undercounting frequency across dates and object categories, revealing 
patterns where the model predicts fewer objects than present. Bobcat-forklifts show severe 
undercounting issues in early dates with very high frequencies (0.84–0.87) but demonstrate 
significant improvement in later periods (dropping to 0.00–0.10). Trucks exhibit concerning 
undercounting patterns, particularly on 9 Feb (0.75) and 28 Feb (0.82), though showing 
better performance on other dates. Person detection shows consistent moderate to high 
undercounting throughout the period (ranging from 0.28 to 0.65), indicating a persistent 
challenge in detecting all present people. Cars perform exceptionally well with minimal 
undercounting (mostly 0.00–0.01), while excavators show improvement over time, starting 
with higher undercounting (0.40 on 8 Feb) but stabilising to lower rates (around 0.07) in later 
periods. Telehandlers maintain zero undercounting throughout, though this likely indicates 
absence rather than perfect detection. Loadout-trucks generally show low undercounting 
except for one notable spike on 9 Feb (0.19). The temporal patterns suggest general 
improvement in model performance for some categories, while person detection and trucks 
face challenges with missed detections. 
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4.13 Computer Vision Challenges 
In this section, we present some of the issues and challenges that AI models may suffer due 
to environmental conditions (sun glares, time of the day), occlusions, and others, which may 
deteriorate the performance of the models. Table 25 shows some issues we identified during 
the data annotation and validation processes.  

Table 25. Issues and challenges in detecting objects using computer vision models 

Date and time Description Example image 

15 Mar 2024 
7 am – 8 am 

Sun obscures the 
excavator and 
excavator buckets for 
most of this video 

 
15 Mar 2024 

1 pm – 2 pm 

Excavator bucket 
emptying obscured for 
approximately 3 
buckets – expect 
discrepancy with 
Sightdata labelling 
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29 Feb 2024 

8:05 am 

Manual labellers 
labelled the number of 
people as two, 
whereas AI did not 
pick up 

 
29 Feb 2024 

8:35 am 

Manual labellers 
labelled the number of 
people as three, 
whereas AI predicted 
only one 
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29 Feb 2024 

10 am 

Manual labellers 
labelled the number of 
people as three, 
whereas AI predicted 
only one 

 

Reviewer: four people 
are present, but only a 
small part of hat is 
visible for the fourth 

 
29 Feb 2024 

10:05 am 

Manual labeller = 3 
people. 

AI = 1 

Which person was 
detected by AI is not 
clear 
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29 Feb 2024 

10:50 am 

Manual labeller = 3 
people. 

AI = 1 

 

 
29 Feb 2024 

11:59 am 

Manual labeller = 2 
people. 

AI = 0 

 

Reviewer: blurred 
objects, maybe due to 
distance of objects 
from the camera, 
and/or resolution 
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29 Feb 2024 

4:35 pm 

Manual labeller = 5 
people. 

AI = 3 people 

 

Reviewer: 5–6 people, 
but panning back and 
forth does not make it 
clearer 

 
18 Mar 2024 

1:02 pm 

The safety cones were 
highlighted, whereas 
there was a worker at 
the back. It was a 
sunny day, and hence, 
there were a lot of 
shadows. These 
situations can trick the 
AI models. 
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Visualisation dashboard  
Sightdata has developed an easy-to-use CV system that provides EHS and logistics support 
to site teams. For this feasibility research study, Sightdata has adapted its safety risk and 
trend identification system to identify logistics metrics on construction sites in real-time.  
 

 
 
The core of the existing system revolves around the tracking of persons and vehicles to 
monitor safety trends for early identification and resolution. This same principle has been 
adapted for logistics to enable site teams to easily track and obtain metrics for: 

• Dirt Loading (Amount of dirt moved throughout the day) 

• Resource Utilisation (Counts and Utilisation % over the day) 
o Plant 
o People. 

Sightdata also places a key emphasis on privacy and security ensuring that all points of the 
system are highly secure and put the privacy of the workers first via a patented de-
identification method. 
Camera Gallery 
The camera gallery functions like a familiar CCTV application that enables users to get an 
overview of all camera feeds in real-time on a singular landing page. The system uses simple 
new or existing cameras and 4G internet to collect, process, and deliver data in real-time to 
those that need to know. While also being designed with flexibility in mind and fully scalable 
enabling users to add or subtract an infinite number of cameras depending on user needs. 
This acts as the central quick-check hub for users looking to get a visual snapshot of site. 

 
Figure 50. Sightdata Dashboard (Sightdata 2024) 
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However, the power of the Sightdata system works behind the scenes where these 
individual camera streams are processed in the cloud and have a wide range of CV and ML 
algorithms applied to each stream.  
On a frame-by-frame basis the system identifies and classifies a large range of vehicle types 
(Excavator, Forklift, Car, Dirt Loading Truck, etc.) to provide counts of resources seen within 
frames. An additional algorithm is then applied to determine if these results are moving 
between frames.  

 
Figure 51. Example camera view (Sightdata 2024) 

The data produced from these algorithms is captured frame by frame and then converted 
into a viewer friendly dashboard for site team review.  
Dashboard Visualisations 
Each section of the dashboard has been designed to identify and collect metrics for a 
specific use case to automate manual reporting activities. Given enough data is provided to 
the system it is possible to report on any visual object, typically Sightdata utilises this to 
provide safety alerts and trends to users but was adapted for this research study to report 
on logistic based metrics: 

• Dirt Loading (Amount of dirt moved throughout the day) 

• Resource Utilisation (Counts and Utilisation % over the day) 
o Plant 
o People. 

In this early stage all dashboards are combined into a format that verifies the application of 
the technology. This allows for users to view a standard daily, weekly, monthly, yearly or 
custom date range that the dashboard will automatically update to show results for that 
period.  
Users are also able to dive deeper into data using the line graphs to home in on data that 
they wish to analyse further. Excel export is also available to meet existing reporting 
requirements. 
The visualisations shown in this report can be altered to any format users required due to 
the amount of data collected from each video frame. 
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Dirt Loading Visualisation 
This module dives deeper into the classification of objects and has been separately trained 
to identify excavator buckets within detected excavators. A separate algorithm is then 
deployed to count the number of buckets loaded out of site to load-out vehicles the algorithm 
can determine total spoil and the time it was removed from site. A variety of visualisations 
have been created based off this information with the aim of providing different insights into 
the dirt loadout metrics that have been collected: 

• Daily Count of Buckets   
o Displays a bar graph showing amount of spoil removed (y-axis) from site over 

time (x-axis) fixed to show ‘1 day’ as the lowest bar on the bar chart 
o Users can highlight a specific date range within the graph to automatically 

adjust the date range of the overall dashboard and dive deeper into a smaller 
range of information 

• Total Buckets unloaded 
o Displays overall counts of spoil removed per camera as a count 
o Users can view this and obtain a quick snapshot of overall metrics relating to 

dirt loading per on-site area 

• Buckets Unloaded per Camera 
o Displays overall % of spoil removed against other cameras as a pie graph 
o Users can view this and obtain a quick snapshot of each area’s removal 

statistics against the other project areas 

• Detailed Count of Bucket Unloads 
o Displays a bar graph showing amount of spoil removed (y-axis) from site over 

time (x-axis). No lower limit is applied to this graph and can show detail down 
to 1 minute bar interval 

o Users can dive deeper into daily spoil removal metrics and get a snapshot of 
spoil loadout activities down to a 1-minute interval. 
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Figure 52. Dirt Loading Dashboard (Sightdata 2024) 

Resource Utilisation Visualisation 
This module enables users to obtain a quick snapshot of plant and worker counts in work 
areas throughout any time period of the project. An additional algorithm is also implemented 
to determine standdown and active time for machinery detected onsite.  

 
Figure 53. Resource Utilisation Dashboard (Sightdata 2024) 
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Resource Utilisation -–Vehicles: 
The Sightdata vehicle detection module is trained to differentiate between a variety of 
common industrial plant for analysis: 

• Bobcat 
• Car 
• Crane 
• Dozer 
• Excavator 
• Excavator-bucket 
• Forklift 
• Loadout-truck 
• Person 
• Telehandler 
• Truck 
• Boom EWP 
• Compactor. 

These vehicle types can be filtered in and out of the dashboard meaning that users can 
single out multiple vehicle types they are interested in or see a snapshot of all onsite plant. 
An additional algorithm is also then applied over the top to not only count the number of 
each vehicle type that is detected but also determine if the vehicle is on motion or stationary. 
A variety of visualisations have been created based off this information with the aim of 
providing different insights into the dirt loadout metrics that have been collected: 

• Vehicles over time 
o Displays a bar graph showing amount of the count of vehicles detected (y-

axis) from site over time (x-axis). This has been created so that users can filter 
cameras in and out to view metrics for different areas 

o Users can highlight a specific date range within the graph to automatically 
adjust the date range of the overall dashboard and dive deeper into a smaller 
range of information 

• Vehicle motion over time 
o Displays a % bar chart every 30 mins that shows a quick snapshot of the total 

of time vehicles spent moving or stationary within that 30 mins 
o Users can view this and obtain a quick snapshot of what proportion of vehicles 

are moving vs stationary in the area 

• Vehicle Time Stationary and in Motion 
o Displays an overall total of if vehicles were moving or stationary onsite for that 

time period 
o Users can view this and obtain a quick snapshot of what proportion of vehicles 

are moving vs stationary in the area. 
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Figure 54. Vehicle count example (Sightdata 2024) 

Resource Utilisation – People:  
Sightdata’s person detection algorithm de-identifies individuals via the introduction of an 
orange blob like figure to mask the persons perimeter. From there the algorithm can take 
privacy conscious counts of persons onscreen and feed this information into the dashboard 
to provide accurate counts of persons in work zones.  

 
Figure 55. People count example (Sightdata 2024) 

• People over time 
o Displays a bar graph showing amount of the count of vehicles detected (y-

axis) from site over time (x-axis). This has been created so that users can filter 
cameras in and out to view metrics for different areas 

o Users can highlight a specific date range within the graph to automatically 
adjust the date range of the overall dashboard and dive deeper into a smaller 
range of information. 

Dashboard Analytics 
Individually the previous metrics are useful for site teams for reporting and will result in 
decreased manual hours previously assigned to tedious and costly tracking exercises. 
However, when different data sets are compared against each other and analysed the 
insights gained from this information can be invaluable. Enabling a quick visualisation for 
site teams to effectively analyse higher-order site trends and metrics.  
 



Building 4.0 CRC Project #28 – The Application of Computer Vision to Measure Productivity and Enhance 
Safety on Construction Sites 

 

OFFICIAL 

OFFICIAL 

 
Figure 56. Dashboard analytics example (Sightdata 2024) 

The below examples can aid decision making and identify inefficiencies previously going 
unnoticed on projects: 
Visualisation of trucks 
The number of detected trucks can be plotted against trucks that were being involved in 
load-out activities and identify inefficiencies in spoil loadout.  
From looking at this graph users could tell that the maximum amount of trucks being loaded 
out at any one time is 4–5 trucks and that unnecessary hours are being spent by trucks 
drivers if more than five arrive.  
 

 
Figure 57. Truck counts (Sightdata 2024) 
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Visualisation of Soil Volume vs Moving Excavators 
The number of moving excavators in the area can be plotted against the total volume of dirt 
that was loaded out in that period.  
From looking at this graph users could identify increased or decreased needs for excavators 
depending on soil volume removal rates the project is aiming for. 

 
Figure 58. Excavator movement (Sightdata 2024) 

Visualisation of the Number of Excavators 
The number of detected excavators can be plotted against the number of moving excavators 
seen in the area. 
From looking at this graph users can identify utilisation of plant onsite and if machinery can 
be off hired if it is no longer required.  

 
Figure 59. Number of excavators (Sightdata 2024) 
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Visualisation of the Number of Workers 
The number of workers onsite can be plotted against a variety of metrics to gain insights into 
the project areas metrics. 

 
Figure 60. Number of workers (Sightdata 2024) 

o Visualisation of the soil volume against rain and temperature 
The Sightdata system is also able to pull in rain and temperature information for comparison 
against area metrics to easily draw comparison of site conditions and its effect on work 
activities. For example, low spoil loadout could be due to inclement weather that resulted in 
cancelled work activities.  

 
Figure 61. Visualisation of soil volume, rain and temperature 

Collected Results 
Results of key loadout dates from onsite works can be found below. Throughout the 
research study multiple data training runs have been implemented each increasing the 
accuracy of the system. Over a longer time period, it is theorised that 99% accuracy can 
be achieved.  
Note: No filter is applied to vehicles in these screenshots, so a range of parked cars and 
utes have caused a dramatic vehicle stationary time in results. Results for 8 Feb are 
presented in subsequent pages with a full series of results for select days in Appendix G. 
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Figure 62. Dirt Loading 9 Feb 2024 (Sightdata 2024) 
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Figure 63. Resources 9 Feb 2024 (Sightdata 2024) 

 

 
Figure 64. Vehicles 9 Feb 2024 (Sightdata 2024) 
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5. IMPLEMENTATION ON 
CONSTRUCTION SITES 
Implementation on construction sites is complex and involves significant logistics and 
stakeholder engagement to ensure all parties understand the work that is being done and 
the privacy controls in place. Below is a list of key stakeholders for this trial: 

1. Level Crossing Removal Project (LXRP) 
Key Concerns: Overseeing overall project progress, ensuring compliance with safety 
standards, and achieving productivity benchmarks. LXRP focuses on managing the 
integration of AI and computer vision technologies to monitor productivity. 

2. The University of Melbourne 
Key Concerns: Ensuring the academic and research validity of computer vision 
models applied in the project. The university team is committed to data accuracy, 
producing valuable insights, and generating reliable results that could support future 
academic studies and industry applications. 

3. Sightdata (Data and Technology Provider) 
Key Concerns: Maintaining the reliability and accuracy of data collection systems, 
upholding data privacy standards, and ensuring that AI and computer vision 
technologies comply with LXRP’s productivity metrics and operational goals. 

4. Project Managers and Alliance Representatives 
Key Concerns and Responsibilities: Managing project timelines, budgets, and 
resource allocation. They oversee on-site data collection activities, including tracking 
truck and trailer counts and earthwork removal volumes. 

5. Workers 
Key Concerns: Ensuring safe working conditions, job security, and fair labour 
practices, while advocating for the responsible adoption of technologies that 
safeguard worker welfare and employment stability. 

5.1 Key challenges faced by the construction sector in adopting digital 
technologies  
Technological Challenges (Soltani et al., 2023) 

• High Costs of Implementation: Implementing digital technologies, such as Building 
Information Modelling (BIM) and the Internet of Things (IoT), often requires 
substantial investment. Many companies, especially small and medium enterprises 
(SMEs), may find these costs prohibitive. The initial outlay for hardware, software, 
and training can be a significant barrier, making it difficult for smaller firms to keep 
pace with larger competitors. 

• Interoperability Issues: The construction industry features disparate software 
systems that often do not communicate effectively with each other. This lack of 
interoperability can lead to inefficiencies and additional costs for upgrading or 
changing systems to ensure compatibility. Without seamless integration, the full 
benefits of digital technologies cannot be realised, leading to fragmented workflows 
and potential data silos. 
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• Lack of Infrastructure: Many construction companies lack the necessary 
technological infrastructure to support the adoption of IR 4.0 technologies. This 
includes both hardware and software capabilities. The absence of a robust 
technological foundation makes it challenging to implement advanced digital tools 
and systems effectively. 

Organisational Challenges 

• Fragmented Industry Structure: The traditional and fragmented structure of the 
construction industry impedes the seamless adoption of new technologies. Different 
stakeholders, such as designers, contractors, and suppliers, often work in silos, 
leading to coordination challenges. This fragmentation can hinder the flow of 
information and slow down the adoption of integrated digital solutions. 

• Resistance to Change: There is significant resistance to change within the 
construction industry. Many stakeholders are hesitant to adopt new technologies due 
to a lack of understanding of their benefits and potential impacts. This resistance is 
often rooted in a preference for established practices and a reluctance to invest in 
unfamiliar tools. 

• Lack of Skilled Workforce: The industry faces a shortage of skilled workers who 
are proficient in using advanced digital technologies. This skills gap makes it 
challenging to implement and effectively utilise new technologies. Without adequate 
training and development, the workforce may struggle to adapt to the demands of 
digital transformation. 

• Leadership and Management Issues: Poor leadership and inadequate 
management attitudes toward digital innovation are barriers to technology adoption. 
There is often a lack of vision and commitment from top management to drive digital 
transformation. Effective leadership is crucial for fostering a culture that embraces 
change and innovation. 

Data-Related Challenges 

• Data Collection and Quality Issues: Effective adoption of digital technologies 
requires high-quality data collection and management. However, challenges in 
ensuring data accuracy, completeness, and reliability can hinder technology 
implementation. Inaccurate or incomplete data can compromise the effectiveness of 
digital tools and lead to suboptimal decision-making. 

• Data Security and Privacy Concerns: The increased use of digital technologies 
raises concerns about data security and privacy. Ensuring robust data protection 
measures is critical to gaining stakeholders' trust. Breaches of data security can have 
severe consequences, including legal ramifications and damage to a company’s 
reputation. 

Social and Cultural Challenges 

• Cultural Barriers and Implicit Biases: The construction industry is traditionally 
male-dominated and resistant to cultural changes. Implicit biases based on gender 
and race can impact the adoption of new technologies and the creation of inclusive 
work environments. Overcoming these biases is essential for fostering a diverse and 
innovative workforce. 

• Generational Resistance: Older workers in the industry may be reluctant to adopt 
new technologies due to a lack of familiarity and comfort with digital tools. This 
generational resistance can slow down the pace of digital transformation. Bridging 
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the gap between different age groups within the workforce is crucial for successful 
technology adoption. 

Policy and Regulatory Challenges 

• Lack of Legislative Mandates: The absence of legislative mandates and 
standardised regulations for adopting IR 4.0 technologies in the construction industry 
complicates the adoption process. Clear policies and guidelines are needed to 
support and incentivise digital transformation. Without regulatory frameworks, there 
is less pressure on companies to innovate and adopt new technologies. 

• Need for Regulatory Compliance: Ensuring compliance with various regulatory 
requirements, including data protection and safety standards, is essential. The lack 
of clear regulatory frameworks can create uncertainties and hinder the adoption of 
digital technologies. Establishing comprehensive regulations will provide a clearer 
path for companies to follow and encourage broader adoption of innovative solutions. 

5.2 Implementation guides to approach to engaging stakeholders 
1. Provide a comprehensive justification for the implementation of innovative 

practices in the business: 
To secure the endorsement of the for Industry 4.0 technologies, it is crucial to 
provide a persuasive rationale that emphasises the concrete advantages. Utilise 
case studies and success stories from previous construction projects to 
demonstrate advancements in safety, productivity, and financial savings 
(McKinsey Global Institute, 2017). Present comprehensive data and return on 
investment (ROI) analyses to demonstrate the financial advantages, thereby 
compelling the adoption of new technologies. 

2. Communicate and build relationships 
It is crucial to develop trust and establish open lines of communication with the 
leadership and members of key stakeholder. Arrange frequent meetings to 
explore the possibilities of cutting-edge technologies and resolve any 
apprehensions. Conduct workshops and seminars that specifically address the 
advantages and application of Industry 4.0 technologies. Invite industry 
professionals and technology providers to share their expertise. Establish online 
forums exclusively for workers to express their viewpoints and offer input on 
proposed advancements, guaranteeing a comprehensive and all-encompassing 
approach. 

3. Develop Pilot Projects and Demonstration Sites 
Demonstrating the tangible implementation and advantages of emerging 
technologies through trial initiatives is exceedingly impactful. Identify and choose 
a small number of prominent pilot projects where Industry 4.0 technologies can 
be applied. Establish exhibition sites where workers can observe the technologies 
being utilised, offering practical experience and instruction. Record and distribute 
the results of these trial initiatives to workers to instil trust in these innovative 
technologies. 
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4. Provide Comprehensive Training and Education 
It is essential to provide workers with the necessary knowledge and skills to 
effectively utilise and gain advantages from emerging technologies. Create 
customised training programmes designed specifically for workers, with a strong 
emphasis on practical skills and safety protocols associated with Industry 4.0 
technologies. Establish partnerships with universities, technical institutes, and 
vocational training centres to provide accredited courses. Implement a system of 
ongoing educational opportunities to ensure that workers remain informed about 
the most recent advancements. 

  



Building 4.0 CRC Project #28 – The Application of Computer Vision to Measure Productivity and Enhance 
Safety on Construction Sites 

 

OFFICIAL 

OFFICIAL 

6. PROJECT FINDINGS  
Bucket Counting: The AI model demonstrates strong performance in counting bucket loads 
of dirt across five days during February and March 2024, with accuracy rates ranging from 
89% to 99%. The system generally shows high reliability, with most days achieving above 
95% accuracy, though there are occasional significant deviations, as seen on 15 March, 
when the overcounting rate reached 10.89%. The hourly analysis reveals that while the 
model can track daily totals well, it may miss or overcount during specific hours, such as the 
substantial undercounting observed between 7:00-8:00 am on 18 March (16 predicted vs 45 
actual). The AI system could provide reliable daily aggregate measurements of earth-moving 
operations for construction site productivity monitoring. However, real-time hourly 
productivity tracking might need additional validation or refinement. 
Loadout Vehicle Counting: The AI model demonstrates consistent performance in 
counting number of trucks leaving the site with maximum errors in the range of +- 5%. 
Although this was deemed accurate by the team it is recommended that earthwork 
monitoring be performed using the bucket counting method as it is less reliant on potentially 
inaccurate assumptions around volumes in each truck/ truck trailer combination. This can 
lead to inaccuracies in estimation of volumes moved which was found to be the case for 
several days in this trial.  
People Counting: Based on the analysis comparing AI predictions against manual 
annotations across eight days in early 2024, the computer vision model shows a promising 
solution but needs performance improvements for people counting. Although the MAE 
remains consistently low (0.11–0.35), suggesting reasonable accuracy, the model exhibits 
a systematic tendency to undercount people, as evidenced by the negative cumulative 
differences across all dates and higher undercounting rates (4–12%) compared to 
overcounting rates (0.28–7%). The undercounting becomes more pronounced as the 
number of people increases, with errors reaching up to two people fewer than actual counts 
when four people are present. For construction site productivity monitoring, this suggests 
the AI system would provide a conservative estimate of site occupancy, though its reliability 
decreases with larger groups present. 
Object Detection: The AI model's performance detecting construction site objects varies 
significantly across different object categories. The exact accuracy improved notably after 
model retraining in mid-February, with most object categories achieving high within-one 
accuracy (above 0.90). However, distinct patterns emerge in detection challenges: person 
detection consistently shows undercounting issues (37–48% undercounting rate). Still, it 
maintains low false positives; vehicles like excavators tend toward overcounting (up to 69% 
overcounting frequency), and smaller equipment like bobcat-forklifts showed marked 
improvement over time. The model performs best during low-activity periods and struggles 
during peak hours (10:00 am – 2:00 pm), mainly when dealing with multiple objects 
simultaneously. For construction site productivity monitoring, this suggests the system can 
provide reliable tracking of general site activity patterns and vehicle movements. However, 
real-time counts during busy periods may require additional verification, especially for 
person counts and when multiple vehicles are present. 
Limitations of Existing Manual Data Collection were particularly evident with data 
duplication between zones and inaccurate assumptions relating to earthwork volumes 
places in trucks The Labour-Intensive manual process was also susceptible to delays in 
reporting, something that was not an issue for the computer vision dashboard. This can 
cause inefficiencies in tracking and reporting, ultimately impacting operational timelines and 
project costs. 
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Finally particular challenges were encountered when Implementing Computer Vision on 
Construction Sites including stakeholder pushback (such as worker resistance), data quality 
and environmental factors including the inconsistent video quality for example footage 
impacted by solar glare and occlusion. Complex equipment interactions also including the 
diverse range of machinery used on construction sites adds complexity to automated 
tracking efforts.  

7. RECOMMENDATIONS 
Recommendations have been broken down into installation and stakeholder engagement 
categories as follows: 
Installation Recommendations 

• Installing cameras at heights of approximately eight metres on site would provide a 
clearer (normalised) view of workers, equipment and plant and placed at entrance 
and exits on the site. This view makes the objects captured relatively better (objects 
appear similar) and reduces the chances of AI missing objects or objects appearing 
too large. 

• Installing cameras at higher heights also reduces the chances of occlusions, 
shadows, accidental tipping, and other issues, improving the capability of AI 
algorithms. This also reduces workers’ concerns about monitoring and privacy with 
cameras at a greater distance and not positioned at eye level. 

• Maintaining at least 1080p resolution will improve recognition at greater distances 
and provides a better balance between detail and bandwidth than 720p. At 1080p, 
you can reliably detect and identify objects at medium distances while managing 
data storage efficiently. H.265+ compression is also strongly recommended within 
camera specifications as it reduces bandwidth by up to 50% compared to standard 
H.265, allowing you to maintain higher resolution and frame rates without 
overwhelming your storage systems. A hybrid approach to camera deployment 
could also be used with high-resolution overview cameras (3840×2160) positioned 
at elevated points to provide comprehensive site coverage, while strategically 
placed 1080p cameras can monitor specific high-activity areas.  

• Sun-glares and illuminations are significant issues for AI algorithms. Positioning 
cameras at height and then pointing them downwards from a height (40 to 60 
degrees from the vertical axis) also reduces the issue of cameras directly 
encountering sun-glares, thereby improving AI's capabilities. 

• Inclusion of a ‘health’ monitoring and notification system for the cameras such as 
monitoring of battery voltage or downtimes would assist in identifying and 
minimising data loss. For critical monitoring implementing a comprehensive backup 
and failover system is recommended for robust data protection and system 
reliability. This could include redundant power supplies, local storage backup and 
auto sync measures to ensure any data missed during network outages is uploaded 
once connections are re-established. 

• Installing GPS sensors along with cameras or having cameras with GPS onboard 
will eliminate the timestamping errors as GPS receivers provide highly precise 
timestamps every second. The GPS timestamps can be integrated along with video 
data to establish a foolproof mechanism of time events on-site, thereby reducing 
prediction and annotation errors.  
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Stakeholder Engagement and Privacy Recommendations 

• Necessary preliminary stakeholder engagement with a focus on the site teams and 
workers. Potential of broader governance structure recommendations for example a 
board that oversees the use of the data. 

• Continuing of blanking out personnel on Sightdata platform to ensure worker 
privacy. 

• Include QR codes on camera poles that link to a webpage explaining privacy 
controls and what the cameras are being used for. 

• Training and information relating to the use of the tools for site crews to ensure 
teams understand the application of the onsite cameras. 

 

8. FUTURE APPLICATIONS 
Cumulative Metrics 
Future applications of AI and machine learning could enable automated tracking of 
personnel, equipment, and activities on-site, monitoring cumulative metrics like total shifts, 
equipment usage, and worker hours. AI could also enhance safety by detecting required 
safety gear in real-time. These applications would turn footage into actionable insights, 
allowing managers to improve productivity, allocate resources efficiently, and ensure a 
safer work environment as detailed in Table 26. 

Table 26. Cumulative metrics of benefit in future iterations  

Metric Description Data Type 

Total Number of Shifts Cumulative count of shifts monitored within the camera's 
field of view over the selected time window. 

Count 

Total Number of People Sum of all individuals detected within the camera's field of 
view over the time window. 

Count 

Average Number of 
People per Shift 

Average count of individuals detected per shift within the 
camera's field of view. 

Average Count 

Total Hours of People Sum of all hours worked by the individuals detected within 
the camera's field of view over the time window. 

Hours (total) 

Average Hours of 
People per Shift 

Average number of hours worked by individuals per shift 
within the camera's field of view. 

Hours (average) 

Total Number of 
Equipment (Per Type) 

Cumulative count of each type of equipment (e.g., 
excavators, dozers) detected within the camera's field of 
view. 

Total count per 
type 

Total Equipment Uptime 
(Per Type) 

Total operational hours for each type of equipment 
detected within the camera's field of view. 

Hours (total per 
equipment type) 

Total Equipment Uptime 
(For Each Equipment) 

Total operational hours for individual equipment units 
(e.g., Excavator 1, Dozer A) detected within the camera's 
field of view. 

Hours (total per 
individual 
equipment) 

 
Combined Metrics 
To effectively manage and analyse the earthwork removal process, using a combination of 
time series and cumulative metrics, which provides a robust set of analysis tools that 
enhance decision-making capabilities. By integrating detailed, real-time observations from 
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time series metrics with broad overviews from cumulative metrics, they gain a deeper insight 
into the project's progression. This dual approach supports both day-to-day and long-term 
strategic management. Additionally, to handle this combined data effectively from all 
cameras on the site, a structured approach to aggregating metrics across multiple 
viewpoints is crucial. This ensures that data from different locations are integrated smoothly, 
providing a comprehensive and cohesive analysis of the entire project as shown in  
Table 27. 

Table 27. Combined metrics of benefit in future iterations 

Combined Metric Description Data Collection 
Method 

Total Number of 
Equipment (Per 
Equipment Type) 

Cumulative count of each type of equipment (e.g., 
excavators, dozers) detected by all cameras across the 
site. 

Cumulative Metric 

Total Equipment 
Uptime or Utilisation 
(Per Equipment Type) 

Sum of operational hours for each type of equipment (e.g., 
total hours for all excavators) detected by all cameras. 

Time Series 
Metric Combined 
with Cumulative 
Data 

Total Equipment 
Uptime or Utilisation 
(For Each Equipment) 

Sum of operational hours for individual equipment units 
(e.g., Excavator 1, Dozer A) as detected by all cameras 

Time Series 
Metric Combined 
with Cumulative 
Data 

The computer vision and AI techniques developed specifically for productivity monitoring of 
earthwork can be extended to other earthwork sites. These metrics can be applied to other 
types of monitoring by modifying the metrics so that the core of the AI techniques can be 
leveraged at multiple sites with minimal changes. For example, computer vision technology 
can play a significant role in ensuring that these projects adhere to environmental standards 
and regulations effectively (Waste Management of EPA). The use of computer vision to 
automatically identify and capture excavator types and bucket sizes, track equipment usage 
in real-time on a dashboard with assigned labels as discussed in the cumulative metrics 
section will also add significant value to the productivity monitoring and improve equipment 
efficiency.  
Implementing a system that links dashboard camera footage with corresponding timestamps 
to hyperlinked video footage would further improve the useability of the dashboard. This 
feature would allow users to click on specific timestamps on the dashboard, instantly 
bringing up the recorded video captured on-site, thereby providing a more detailed and 
visual record of the work being performed ensuring that the site team can gain rapid insights 
into the performance of the project. 
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APPENDICES 

 Appendix A – LXRP Tracking Spreadsheet Example  
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Appendix B – Camera Installation and Configuration Guidelines 
Table 28. Hikvision camera specifications (2024) 
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Table 29. Video data collection summary of considerations 

Stage Process Description 

Data Collection Camera Setup Installation of cameras 
strategically around the site to 
cover all necessary angles for 
earthwork monitoring. 

Video Capture Continuous or interval-based 
capturing of video during 
earthwork operations, with 
optimal resolution and frame rate 

Data Transmission Transferring the captured video 
data to a processing site remotely 
(cloud). 

Data Processing Data Processing Enhancing video quality through 
stabilisation and resolution 
enhancement 

Object Detection and Tracking Using computer vision algorithms 
to identify and track objects such 
as equipment and personnel 
involved in earthwork. 

Feature Extraction Extracting relevant features from 
the video, such as equipment 
operation times, movement 
patterns, and volumes moved. 

Data Interpretation Analysing extracted features to 
derive actionable insights for 
optimising earthwork operations. 

Data Storage and Management Storage Efficiently storing processed data 
in a way that optimises space 
and maintains accessibility. 

Data Management Organising, maintaining, and 
securing video data, ensuring 
integrity and compliance with 
data protection laws. 
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Stage Process Description 

Privacy and Compliance Privacy Protection Ensuring the video data collection 
complies with privacy laws and 
regulations. 

Data Anonymisation Masking or anonymising 
identifiable information to protect 
privacy 

Legal Compliance Adhering to legal standards and 
obtaining necessary permissions. 

System Reliability Hardware Reliability Ensuring cameras and other 
equipment function properly 
without failures 

Network Reliability Maintaining a robust network for 
uninterrupted data transmission. 

Backup Systems Implementing backup systems to 
prevent data loss in case of 
failures. 

Data Security Encryption Encrypting video data during 
transmission and storage for 
security. 

Access Control Restricting access to the video 
data to authorised personnel 
only. 

Quality Assurance Data Quality Checks Regularly verifying the quality 
and accuracy of the collected 
data. 

System Audits Conducting periodic audits to 
ensure the system is functioning 
as intended. 

Scalability Scalability Ensuring the system can handle 
increasing amounts of data as 
the project grows. 

Futureproofing Planning for future technological 
upgrades and expansions. 

Environmental Conditions Weather Monitoring Adjusting data collection methods 
based on weather conditions. 

Site Lighting Ensuring adequate lighting for 
clear video capture during all 
times of day. 
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Table 30. Camera Types and Specifications 

Feature Recommendation 

Camera Types Use a combination of Dome and Bullet cameras for general coverage, and PTZ 
cameras for wide area coverage 

Resolution Minimum 1080p for clear footage; higher resolution for detailed area monitoring 

Weatherproof and 
Dust-proof 

Cameras must be robust to withstand environmental challenges (rain, dust, 
temperature changes) 

Night Vision Ensure cameras have night vision capabilities for monitoring low-light 
conditions 

Additional Features Pan, Tilt, Zoom (PTZ) capabilities, motion detection, remote access 
 

Table 31. Placement Strategy (more specific in range of the camera – FOV, viewing angle) 

Criteria  Recommendation 

General Placement High vantage points for comprehensive coverage. To capture to the truck 
loadout needs minimum of how far away  

Excavation Areas Place cameras to monitor excavation activities, ensuring clear views of digging 
and earth movement (bucket swing) 

Truck Loading Zones Monitor areas where trucks are loaded with excavated material 

Entry and Exit Points  Monitor all entry and exit points to track vehicle movement (license plate). LPR 
camera 

Rail Over (a bridge)/ 
Under the Trench 

Place cameras above and below trench rail passes to monitor structural 
integrity and work progress. Ensure clear views of any potential hazards. 
(mounting the wall with cage, how to protect the camera from people). 
Example camera positioning (project have done that). Recommendation: 
Additional camera (entry and exit point)  

 

Table 32. Number of Cameras 

Criteria  Recommendation 

Site Size and 
Complexity  

Higher resolution for longer range surveillance; PTZ cameras for extensive 
coverage areas (recommended camera in entry and exit point, loadout area. 2 
cameras in camera pole) (example: LPO camera) 

Coverage Gaps Ensure no blind spots in coverage 

 
Table 33. Range, Camera Type, and Resolution 

Feature Recommendation 

Range and Type 
Compatibility  

Determine the number of cameras based on the size and complexity of the site 

Environmental 
Considerations 

Weatherproof and durable cameras for outdoor settings 

Motion Detection and 
PTZ 

PTZ cameras for dynamic monitoring; motion detection for efficiency. 
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Table 34. Installation and Power Supply 

Criteria Recommendation 

Mounting Heights and 
Angles 

Optimise mounting heights and angles for maximum coverage and minimum 
tampering 

Power Supply Use reliable power sources; solar power with batteries are most appropriate for 
the transient nature of construction sites.  

 

Table 35. Monitoring 

Criteria Recommendation 

Real-Time Monitoring Implement real-time monitoring 
 

Table 36. Legal and Privacy Compliance 

Criteria Recommendation 

Compliance with Local 
Laws 

Follow local regulations regarding video surveillance 

Signage Place sufficient signage to inform personnel and visitors of surveillance (QR-
code) 

Privacy Set up privacy zones digitally or physically to avoid recording sensitive areas. 
Use software to blur individuals captured in video footage to ensure privacy 
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Appendix C – Selected Time Windows 

 
 

 
Figure 65. Time Window for excavation and haulage activity 

The Time Window Table provides a structured overview of footage availability, excavation activity, and 
haulage operations, specifically focusing on Camera 4 (CAM4). Each row in the table corresponds to a specific 
date, summarising key details such as the total number of loads recorded from load sheets, the availability of 
footage on Amazon Kinesis, and the status of footage labelling. 

Key Elements of the Table: 
1. Footage Availability: 

o The table uses colour codes to indicate whether footage is available for each date: 

 Green indicates that footage is available and includes substantial excavation and 
haulage activity within the camera’s field of view (FOV). 

 Yellow represents dates where no significant excavation or haulage activity occurred 
despite the availability of load sheets. 

 Red marks dates where footage is unavailable for verification. 

2. Total Loads (from Load Sheets): 
o The table records the number of haulage truck loads based on load sheets, which helps 

correlate operational data with available footage. Dates with high truck counts (e.g.,16 Feb, 
with 145 loads) are marked in green, indicating these days are important for verification. 

3. Footage Exported and Labelling Status: 

o These columns track the status of footage export and labelling for each date. Dates where 
footage has been exported and is under review for labelling are marked with ongoing 
statuses, ensuring the team is aware of progress. 

o Some dates (marked with red or yellow) indicate no footage or load sheet was available, thus 
limiting the ability to manually label and validate those periods. 
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Validation Metrics for Selected Time Windows 
During the selected time windows, the following metrics will be extracted and compared with 
AI-generated data: 

• Count of People: Manual counting of workers detected in the camera’s FOV during 
the selected periods. 

• Count of Plant: Verification of the AI’s detection of different types of equipment 
(excavators, trucks, etc.). 

• Utilisation Rate of Plant: Comparison of AI-generated plant utilisation rates with 
manually recorded data. 

• Count of Buckets Unloaded to Trucks: Manual counting of the number of times 
excavators load spoil into trucks, validated against AI data. 
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Appendix D – Manual recording of haulage operation 

 
Figure 66. Truck count site sheet – CAM 4 
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Appendix E – Bucket Payload 

 
Figure 67. Extract from Caterpillar performance handbook 2019 
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Appendix F – Detailed Comparison of AI-Generated Results 
Bucket Count Analysis 
The following four figures show the hourly bucket count comparison between the actual 
and AI-predicted counts for 9 Feb, 28 Feb, 29 Feb, and 15 Mar, respectively. 
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People Count Analysis 
Figures (raw counts and prediction error statistics)  
8 Feb 2024 
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9 Feb 2024 
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15 Feb 2024 
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16 Feb 2024 
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28 Feb 2024 
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29 Feb 2024  
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15 Mar 2024 
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Object Detection Analysis 
8 Feb 2024 

 
 

 
 

Object Total Count Error Mean Count Difference RMSE Correlation R squared Overcounting Rate (%) Undercounting Rate (%)
bobcat_forklift -117.00 -0.77 0.88 0.10 -3.99 0.00 76.97
car 23.00 0.15 0.39 0.00 0.00 15.13 0.00
excavator 29.00 0.19 1.13 0.35 -1.31 39.47 27.63
loadout-truck 28.00 0.18 0.44 0.00 0.00 17.76 0.00
person -109.00 -0.72 1.18 0.64 0.04 0.00 48.03
telehandler -1.00 -0.01 0.08 0.00 -0.01 0.00 0.66
truck -82.00 -0.54 0.80 0.49 -0.39 0.00 48.68
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9 Feb 2024 

 

Object Total Count Error Mean Count Difference RMSE Correlation R squared Overcounting Rate (%) Undercounting Rate (%)
bobcat_forklift -98.00 -0.62 0.85 0.10 -2.97 1.27 59.87
car 0.00 0.00 0.11 -0.01 -1.01 0.64 0.64
excavator 191.00 1.22 1.80 0.21 -2.34 68.79 3.82
loadout-truck 34.00 0.22 0.87 -0.08 -1.36 40.76 22.29
person -14.00 -0.09 0.55 0.83 0.68 3.18 10.83
telehandler 0.00 0.00 0.00 0.00 0.00 0.00 0.00
truck -194.00 -1.24 1.53 0.15 -1.81 0.00 75.16
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15 Feb 2024 

 
 

 

Object Total Count Error Mean Count Difference RMSE Correlation R squared Overcounting Rate (%) Undercounting Rate (%)
bobcat_forklift -120.00 -0.86 0.95 0.47 -3.85 0.00 84.17
car 5.00 0.04 0.25 -0.02 -8.07 3.60 0.72
excavator 32.00 0.23 1.07 0.17 -0.35 41.01 25.90
loadout-truck 32.00 0.23 0.56 0.00 0.00 19.42 0.00
person -85.00 -0.61 1.06 0.73 0.30 2.88 48.92
telehandler 0.00 0.00 0.00 0.00 0.00 0.00 0.00
truck -76.00 -0.55 0.86 0.28 -0.63 1.44 48.20
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16 Feb 2024 

 

Object Total Count Error Mean Count Difference RMSE Correlation R squared Overcounting Rate (%) Undercounting Rate (%)
bobcat_forklift -81.00 -0.53 0.76 0.15 -4.34 2.60 55.19
car 33.00 0.21 0.48 -0.04 -34.23 22.08 0.65
excavator 129.00 0.84 1.16 0.28 -1.70 68.18 4.55
loadout-truck 54.00 0.35 0.64 0.00 0.00 31.82 0.00
person -95.00 -0.62 1.08 0.81 0.46 1.95 42.21
telehandler 0.00 0.00 0.00 0.00 0.00 0.00 0.00
truck -61.00 -0.40 0.70 0.45 -0.22 0.65 36.36
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28 Feb 2024 

 

 
 

Object Total Count Error Mean Count Difference RMSE Correlation R squared Overcounting Rate (%) Undercounting Rate (%)
bobcat_forklift 1.00 0.01 0.08 0.99 0.97 0.69 0.00
car 20.00 0.14 0.37 0.20 -19.14 13.89 0.00
excavator 29.00 0.20 0.52 -0.02 -0.39 23.61 3.47
loadout-truck 55.00 0.38 0.69 0.25 -4.67 36.11 1.39
person -58.00 -0.40 0.91 0.60 0.20 2.78 27.78
telehandler 0.00 0.00 0.00 0.00 0.00 0.00 0.00
truck -170.00 -1.18 1.39 -0.03 -3.15 0.00 81.94
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29 Feb 2024 

 

Object Total Count Error Mean Count Difference RMSE Correlation R squared Overcounting Rate (%) Undercounting Rate (%)
bobcat_forklift 0.00 0.00 0.25 0.87 0.73 3.25 3.25
car 5.00 0.03 0.18 0.40 -4.03 3.25 0.00
excavator 0.00 0.00 0.36 0.23 -0.44 6.49 6.49
loadout-truck -6.00 -0.04 0.28 0.86 0.71 1.95 5.84
person -84.00 -0.55 0.87 0.79 0.37 1.30 47.40
telehandler 0.00 0.00 0.00 0.00 0.00 0.00 0.00
truck -1.00 -0.01 0.21 0.20 -0.45 1.95 2.60
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15 Mar 2024 

 

 

Object Total Count Error Mean Count Difference RMSE Correlation R squared Overcounting Rate (%) Undercounting Rate (%)
bobcat_forklift -12.00 -0.08 0.35 0.73 0.45 2.00 10.00
car -1.00 -0.01 0.08 0.96 0.92 0.00 0.67
excavator 22.00 0.15 0.57 0.52 0.03 22.67 7.33
loadout-truck 36.00 0.24 0.50 0.00 0.00 23.33 0.00
person -45.00 -0.30 0.96 0.75 0.52 10.67 28.67
telehandler 0.00 0.00 0.00 0.00 0.00 0.00 0.00
truck -64.00 -0.43 0.70 0.39 -0.40 0.67 40.67
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Appendix G – Visualisation Dashboard Additional Days  
16 Feb 2024 
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